Answer:
3000 hurs
Explanation: just divide 150000 by 50 and get 3000
8 miles per hour
(extra space)
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Answer:
People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
Explanation:
- Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
-
- Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
-
- However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
-
- Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.