Go to slader.com and type in the full name of the text book and page number. It should have the andwers
The equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is equal to: A. 21 F.
<h3>The types of circuit.</h3>
Basically, the components of an electrical circuit can be connected or arranged in two forms and these are;
<h3>What is a parallel circuit?</h3>
A parallel circuit can be defined as an electrical circuit with the same potential difference (voltage) across its terminals. This ultimately implies that, the equivalent capacitance (
) of two (2) capacitors which are connected in parallel is equal to the sum of the individual (each) capacitances.
Mathematically, the equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is given by this formula:
Ceq = C₁ + C₂ + C₃ + C₄
Substituting the given parameters into the formula, we have;
Ceq = 10 F + 3 F + 7 F + 1 F
Equivalent capacitance, Ceq = 21 F.
Read more equivalent capacitance here: brainly.com/question/27548736
#SPJ1
<span>The American Southwest and northeastern Africa are the two sunniest regions of the world, with the U.S. city of Yuma, Arizona, taking the crown as the sunniest place on Earth. Yuma, located where the state borders both California and Mexico, receives more than 4,000 sunlight hours per year and averages 11 sunny hours per day over the course of the year. Following closely behind Yuma is another U.S. city -- Phoenix -- which receives an average of 3,872 sunlight hours a year. The third sunniest spot on Earth is Aswan, Egypt, which has an average of 3,863 sunlight hours every year and averages 10.6 sunny hours per day.</span>
Answer: I think it’s 20cm.
Answer:
The equation of motion is 

Explanation:
Lets calculate
The weight attached to the spring is 24 pounds
Acceleration due to gravity is 
Assume x , is spring stretched length is ,4 inches
Converting the length inches into feet 
The weight (W=mg) is balanced by restoring force ks at equilibrium position
mg=kx
⇒ 
The spring constant , 
= 72
If the mass is displaced from its equilibrium position by an amount x, then the differential equation is



Auxiliary equation is, 

=
Thus , the solution is 

The mass is released from the rest x'(0) = 0
=0


Therefore ,

Since , the mass is released from the rest from 4 inches
inches
feet
feet
Therefore , the equation of motion is 