1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
11

A pendulum is swinging back and forth with a period of 2.0 seconds here on Earth. This pendulum is then brought to the Moon, whe

re the acceleration due to gravity is much smaller. What will happen to the period of the pendulum, assuming everything else about it (mass, length, initial swing height, etc) remains exactly the same? Explain your answer.
Physics
1 answer:
Kryger [21]3 years ago
7 0

Answer:

A greater period.

Explanation:

The period of a simple pendulum is given by the following formula:

T = 2\pi \cdot \sqrt{\frac{l}{g} }

Where:

l - Length of the pendulum

g - Gravity constant

Since acceleration due to gravity is smaller in the Moon, period will be greater.

You might be interested in
A group of atoms with aligned magnetic poles are known as which of the following?
cestrela7 [59]
A magnetic domain is a group of atoms aligns with magnetic poles. Domains are usually <span>light and dark stripes visible within each grain.</span>
4 0
3 years ago
Read 2 more answers
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
3 years ago
The gravitational force between two objects depends on the masses and what factor between them
mina [271]
Mass and distance

If mass is doubled, the force of gravity between the objects is doubled
6 0
4 years ago
Which region of the early universe was most likely to become a galaxy?
kramer

Answer:

This is likely possible for a region whose matter density is higher than the normal average.

Explanation:

A galaxy is a collection of lumps in space which are clumped together and interact with each other. There are a lot of speculations on how galaxies were birthed. some believe its formed by a collection of massive gas, dust which eventually collapsed under their own gravitational pull. others says its formed by the combination of large lumps of matter which accumulated forming thee galaxies. The possibility of a galaxy forming is dependent on how massive the matter in the region of the universe is.

3 0
3 years ago
What is a successful result of science
Vlada [557]
I think the answer is discovery.
7 0
3 years ago
Other questions:
  • Which statement best explains the relationship between current, voltage, and resistance?
    15·1 answer
  • A wire of resistance 5.9 Ω is connected to a battery whose emf ε is 4.0 V and whose internal resistance is 1.2 Ω. In 2.9 min, ho
    9·1 answer
  • after swimming away from captain terror randy enters a 16 yard downhill couch race. how many feet is the race
    14·1 answer
  • Starting from rest, a truck travels in a straight line for 8.0 s with a uniform acceleration of +1.6 m/s2. The driver then appli
    5·1 answer
  • Point charges q1 = 14 µC and q2 = −60 µC are fixed at r1 = (5.0î − 4.0ĵ) m and r2 = (9.0î + 7.5ĵ) m. What is the force (in N) of
    9·1 answer
  • A ray of red light in air is incident at an angle of 30. on a
    15·1 answer
  • Why is the density of iron higher than the density of oxygen?
    6·1 answer
  • The force of attraction between a ball is F=.........×10^-¹¹
    14·1 answer
  • Find the distance from a point charge q=100nC where the field intensity is equal to E=6kN/C. please include description of the r
    14·1 answer
  • Which of the following is NOT a type of scientist?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!