Answer:
A. the left half becomes neutral while the right half remains negatively charged
Explanation:
This is because wherever light strikes the photoconductor, it transforms from an insulator into a conductor. The charge will then migrate through it and leaves its surface. By exposing the left half of the photoconductor to light, you allow its local charge to leave and it becomes neutral.
A = Delta v/Delta t
Delta v = 25 - 0 = 25
Delta t = 30
25/30 = 5/6 = 1.66 repeating
Answer: The length of the shadow on the wall is decreasing by 0.6m/s
Explanation:
the specified moment in the problem, the man is standing at point D with his head at point E.
At that moment, his shadow on the wall is y=BC.
The two right triangles ΔABC and ΔADE are similar triangles. As such, their corresponding sides have equal ratios:
ADAB=DEBC
8/12=2/y,∴y=3 meters
If we consider the distance of the man from the building as x then the distance from the spotlight to the man is 12−x.
(12−x) /12=2/y
1− (1 /12x )=2 × 1/y
Let's take derivatives of both sides:
−1 / 12dx = −2 × 1 / y^2 dy
Let's divide both sides by dt:
−1/12⋅dx/dt=−2/y^2⋅dy/dt
At the specified moment:
dxdt=1.6 m/s
y=3
Let's plug them in:
−1/121.6) = - 2/9 × dy/dt
dy/dt = 1.6/12 ÷ 2/9
dy/dt = 1.6/12 × 9/2
dy/dt = 14.4/24 = 0.6m/s