Answer:

Explanation:
Given:
volume of air in the room, 
temperature of the room, 
<u>Saturation water vapor pressure at any temperature T K is given as:</u>
<u />
<u />
putting T=298 K we have

<u>The no. of moles of water molecules that this volume of air can hold is:</u>
Using Ideal gas law,



is the maximum capacity of the given volume of air to hold the moisture.
Currently we have 80% of n, so the mass of 20% of n:

where;
M= molecular mass of water

is the mass of water that can vaporize further.
Current at all points of a series circuit must be the same, because there's no place in the circuit where electrons are being manufactured, and no place where they're leaking out and falling on the floor. The nimber of electrons that leaves the loop is the same number that entered it.
I'm not sure what is nmeant by "p.d. remains different" .
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s
Answer:
your the class suru and Sahiba and Sahiba are all guddu saifi and Mam aap Aman and Sahiba are not
Answer: C
Explanation: The warm, wet air in a low pressure system has risen up and cooled down.
Please give Brainliest if you can!