Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.
True. Classifying by similarities is the basis for biological classification.
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards
Answer:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).
Explanation:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).