Answer:
Intrusive and Extrusive igneous rocks.
Explanation:
Igneous rocks are defined as those rocks that are formed when magma undergoes the process of crystallization and solidification at or below the earth's surface. For example, Granite, Rhyolite, Gabbro and Diorite.
The igneous rocks are of two different types, namely-
- Intrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes below or within the earth's crust. For example, Granite.
- Extrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes and solidifies at the surface of the earth. For example, Basalt.
In balancing reactions, the number of atoms on each side should be of equal number. It is the most important rule in reactions. Also, we should know the correct substances involved in the reaction. We do as follows:
2K + MgBr2 = 2KBr + Mg
Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
Answer:
The correct answer is 2.75 grams of HCl.
Explanation:
The given balanced equation is:
CaCO₃ (s) + 2HCl (aq) ⇒ CaCl₂ (aq) + H₂O (l) + CO₂ (g)
Based on the given information, one mole of calcium carbonate is reacting with two moles of HCl. The molecular mass of HCl is 36.5 grams, thus, the mass of 2 moles of HCl will be, 36.5 × 2 = 73 grams
The molecular mass of CaCO₃ is 100 gram per mole, that is, the mass of 1 mole of CaCO₃ is 100 grams, therefore, the mass of HCl required for reacting with 3.75 grams of CaCO₃ will be,
= 3.75 × 2 × 36.5 / 100 = 2.74 grams of HCl.