The second illustration is the best representation of the change in the movement of particles as the temperature of the water changes.
<u>Explanation:</u>
The second option perfectly represents the boiling of water. As when the temperature is increased, the water molecules gain energy to move faster, thus their kinetic energy of the atoms will be more. This will lead to more freely movement of all the atoms of the water.
And as boiling leads to transformation from liquid state to gaseous state, so the increase in the distance between atoms and molecules occurs in the gaseous state. Thus, the second illustration is best suitable for representing the boiling of water.
As on increasing temperature of the water, the distance between the molecules is increasing in the second illustration while the other illustration shows the decrease in the distance between the molecules. So, the second illustration is the best representation of the change in the movement of particles as the temperature of the water changes.
Answer: Option (2) is the correct answer.
Explanation:
Atomic number of oxygen atom is 8 and its electronic distribution is 2, 6. So, it contains only 2 orbitals which are closer to the nucleus of the atom.
As a result, the valence electrons are pulled closer by the nucleus of oxygen atom due to which there occurs a decrease in atomic size of the atom.
Whereas atomic number of sulfur is 16 and its electronic distribution is 2, 8, 6. As there are more number of orbitals present in a sulfur atom so, the valence electrons are away from the nucleus of the atom.
Hence, there is less force of attraction between nucleus of sulfur atom and its valence electrons due to which size of sulfur atom is larger than the size of oxygen atom.
Thus, we can conclude that the oxygen atom is smaller than the sulfur atom because the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.
Answer:
The answer to your question is: 6.55 x 10 ²³ atoms of Br
Explanation:
CH2Br2 = 37.9 g
MW CH2Br2 = (12 x 1) + (2 x 1) + (80 x 2) = 174 g
174 g of CH2Br2 ------------------ 160 g of Br2
37.9 g of CH2Br2 --------------- x
x = 37.9 x 160/174 = 34.85 g of Br
1 mol of Br ----------------- 160 g Br2
x ---------------- 174 g Be2
x = 174 x 1 /160 = 1.088 mol of Br2
1 mol of Br ----------------- 6.023 x 10 ²³ atoms
1.088 mol of Br ------------- x
x = 1.088 x 6.023 x 10 ²³ / 1 = 6.55 x 10 ²³ atoms
The answer is 0.600 M; but I don't know how to get to that answer.