Answer:
0.015 moles
Explanation:
- One mole of a compound contains molecules equivalent to the Avogadro's constant, 6.022 × 10^23.
- That is, 1 mole of a compound will have 6.022 × 10^23 molecules.
In our case, We are given 8.96 x 10^21 molecules of KBr
We need to find the number of moles in 8.96 x 10^21 molecules
1 mole of KBr = 6.022 × 10^23 molecules.
8.96 x 10^21 molecules = ?
Therefore;
(1 × 8.96 x 10^21 molecules ) ÷ 6.022 × 10^23 molecules.
= 1.488 × 10^-2 moles
= 0.01488 moles
= 0.015 moles
Answer:
744.9 mmHg ≅ 745 mmHg
Explanation:
The base to solve this, is the Ideal Gases Law. The mentioned formula is:
P . V = n . R . T
To compare two situations, we can propose:
For the first situation P₁ . V₁ = n₁. R . T₁
For the second situation P₂ . V₂ = n₂ . R . T₂
As the sample has the same moles and R is a constant value, we can avoid them so: (P₁ . V₁) / T₁ = (P₂ . V₂) / T₂
We need to make Tº unit conversion:
25ºC + 273 = 298K
We replace data → (370 mL . 1020 mmHg) / 298K = (P . 510 mL) / 300 K
(377400 mL.mmHg / 298K) . 300 K = P . 510 mL
379932.8 mL . mmHg = P . 510 mL
(379932.8 mL . mmHg) / 510 mL = P → 744.9 mmHg
Answer:
Translate from Ukrainian.
У цей приклад я візьму селекції пшениці. Коли ми будемо говорити про селекцію цього злака, то ми можемо отримати меньшу собівартість, та вартість вирощування. Збільшена урожайність, та менша потреба в гербіцидах, пестицидах, та інсектицидах це теж наслідок. Тому селекція це майбутнє!