Answer:
1.55 × 10²⁵ atoms of H
Explanation:
3.21mol C₃H₈ × 8mol H × (6.022×10²³)
<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
Answer:
Option E. 2.04 L
Explanation:
Data obtained from the question include:
Molarity of NaCl = 2.25 M
Mole of NaCl = 4.58 moles
Volume =..?
Molarity is simply defined as the mole of solute per unit litre of the solution. It is represented mathematically as:
Molarity = mole /Volume
With the above formula, we can obtain the volume of the solution as follow:
Molarity = mole /Volume
2.25 = 4.58/volume
Cross multiply
2.25 x volume = 4.58
Divide both side by 2.25
Volume = 4.58/2.25
Volume = 2.04 L
Therefore, the volume of the solution is 2.04 L
There are eight protons in an Oxygen's nucleus.
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Zn = 2g
Theoretical yield of ZnI₂ = ?
Solution:
Chemical equation:
Zn + I₂ → ZnI₂
Number of moles of Zn:
Number of moles = mass/molar mass
Number of moles = 2g / 65.38 g/mol
Number of moles = 0.03 mol
Now we will compare the moles of Zn and ZnI₂.
Zn : ZnI₂
1 : 1
0.03 : 0.03
Mass of ZnI₂:
Mass = number of moles × molar mass
Mass = 0.03 mol × 319.22 g/mol
Mass = 9.58 g