The answer is actually a,b, and d
Brainliest?
Answer:
2274 J/kg ∙ K
Explanation:
The complete statement of the question is :
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
= mass of metal = 400 g
= specific heat of metal = ?
= initial temperature of metal = 100 °C
= mass of aluminum cup = 100 g
= specific heat of aluminum cup = 900.0 J/kg ∙ K
= initial temperature of aluminum cup = 15 °C
= mass of water = 500 g
= specific heat of water = 4186 J/kg ∙ K
= initial temperature of water = 15 °C
= Final equilibrium temperature = 40 °C
Using conservation of energy
heat lost by metal = heat gained by aluminum cup + heat gained by water

False. Theodore Roosevelt was the youngest.
Answer:
Explanation:
Given that, current generated from lightning range from
10⁴ A < I < 10^5 A
We know that,
The magnetic force is given as
F = iLB
The magnetic field on the earth surface is
B = 10^-5 T
So, let assume the worst case of a 15m flag pole
L = 15m
Then,
F = iLB
F = 10^5 × 10 × 10^-5
F = 15 N
Therefore, 15N is fairly strong so it will come to the material that was use for the material of the flag pole.
Therefore, it is possible that the student is right depending on the material of the flag pole.
To increase it's size
Waxing is the opposite of waning, which is to decrease.