Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s
(a)
KE = m v^2 / 2 = (1200 kg)(20 m/s)^2 / 2 = 240,000 J
(b)
The energy is entirely dissipated by the force of friction in the brake system.
(c)
W = delta KE = KEf - KEi = (0 - 240,000) J = -240,000 J
(d)
Fd = delta KE
F = (delta KE) / d = (-240,000 J) / (50 m) = -4800 N
The magnitude of the friction force is 4800 N.
Answer:
The answer is "
"
Explanation:
Z=2, so the equation is 
Calculate the value for E when:
n=2 and n=9
The energy is the difference in transformation, name the energy delta E Deduct these two energies
In this transition, the wavelength of the photon emitted is:



Answer:
a = 0.1067 [m/s²]
Explanation:
In order to solve this problem, we must first draw a free body diagram with the forces acting on it.
a)
In the attached image we can find the free body diagram.
b)
The net force can be found by performing a sum of forces on the X-axis, these forces are seen in the free body diagram.
∑Fx = Fr
where:
Fr = resultant force [N] (units of Newtons)
![F_{r}=275+275-310\\F_{r}=240[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D275%2B275-310%5C%5CF_%7Br%7D%3D240%5BN%5D)
c)
Acceleration can be found by means of Newton's second law, which tells us that the sum of the forces in a body or the resulting force is equal to the product of mass by acceleration.
∑F = m*a
where:
m = mass = 2250 [kg]
a = acceleration [m/s²]
![240=2250*a\\a=0.1067[m/s^{2} ]](https://tex.z-dn.net/?f=240%3D2250%2Aa%5C%5Ca%3D0.1067%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
It gets hotter and hotter and it would start to be a liquid lava
Explanation: