Answer:
Acceleration will increase.
Explanation:
The relation between force, mass and acceleration according to the Newton's second law of motion is given as:
F = ma
We are given that the driving force on the truck remains constant, so F is constant here. We can rewrite the above equation as:

Since, F is constant, the acceleration of the truck is inversely proportional to the mass.
There is a hole at the bottom of the truck through which the sand is being lost at a constant rate. Since, the sand is being lost, the overall mass of the truck is being reduced.
Since, the acceleration of the truck is inversely proportional to the mass, the reduced mass will result in an increased acceleration.
So, the acceleration of the truck will increase.
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
Answer:
I believe it's sound energy.
Explanation:
Sound can move through air, whereas electric and radiant energy don't have to.
Given:
P1 = 400 kPa
T1 = 110 K
T2 = 235K
Required:
P2
Solution:
Apply Gay-Lussac’s
law where P/T = constant
P1/T1 = P2/T2
P2 = T2P1/T1
P2 = (235K)(400kPa)
/ (110K)
P2 = 855 kPa