The maximum force that the tires can exert on the road before slipping is 16200 N.
From the information in the question;
The coefficient of static friction = 0.9
The mass of the car = 1800 kg
Using the formula;
μ = F/R
μ = coefficient of static friction
F = force on the tires
R = the reaction force
But recall that the reaction is equal in magnitude to the weight of the car.
W=R
Hence; R = 1800 kg × 10 ms-2 = 18000 N
Making F the subject of the formula;
F = μR
Substituting values;
F = 18000 N × 0.9
F = 16200 N
Hence, the maximum force that the tires can exert on the road before slipping is 16200 N.
Learn more: brainly.com/question/18754989
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg
Answer:
the ball is rolling 7m/s
Explanation:
Formula for kinetic energy: 1/2mv²
K = 1/2mv²
98 = 1/2(4)v²
98 = 2v²
49 = v²
√49 = v
7 = v