Answer:
False
Explanation:
Let's consider the definition of the angular momentum,

where
is the moment of inertia for a rigid body. Now, this moment of inertia could change if we change the axis of rotation, because "r" is defined as the distance between the puntual mass and the nearest point on the axis of rotation, but still it's going to have some value. On the other hand,
so
unless
║
.
In conclusion, a rigid body could rotate about certain axis, generating an angular momentum, but if you choose another axis, there could be some parts of the rigid body rotating around the new axis, especially if there is a projection of the old axis in the new one.
Answer:

Explanation:
wavelength, λ = 2.5 m
speed, v = 13.8 m/s
Amplitude, A = 0.14 m
The general equation of the transverse harmonic wave which is travelling right is given by

where, Ф is phase
At t = 0, x = 0 , y = 0.14 m
0.14 = 0.14 Sin Ф
Ф = π/2
So, the equation is


Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:

Answer:
The "butterfly Effect"
Explanation:
The "butterfly effect" will probably have big changes in the future.