Answer:
The distance in kilometers is 4012 ×
km.
Explanation:
We know that the conversion of 1 millimeters is equal to
meter. And then the conversion of 1 meter is equal to
km. Then the conversion of 1 millimeter to km will be
1 mm =
m
1 m =
km
So, 1 mm =
×
km =
km.
As here the the distance is 4012 mm, then the distance in km will be
4012 mm = 4012 ×
km.
So the distance is 4012 ×
km.
Answer:4.32Nm
Explanation:
The magnitude of the torque will be the product of the force and its perpendicular distance from the force.
Force = 27N
Perpendicular distance = 16cm = 0.16m
Torque = 27×0.16
Torque = 4.32Nm
Answer:
a) 6.9*10^14 Hz
b) 9*10^-12 T
Explanation:
From the question, we know that
435 nm is given as the wavelength of the wave, at the same time, we also know that the amplitude of the electric field, E(max) has been given to be 2.7*10^-3 V/m
a)
To find the frequency of the wave, we would be applying this formula
c = fλ, where c = speed of light
f = c/λ
f = 3*10^8 / 435*10^-9
f = 6.90*10^14 Hz
b) again, to find the amplitude of the magnetic field, we would use this relation
E(max) = B(max) * c, magnetic field amplitude, B(max) =
B(max) = E(max)/c
B(max) = 2.7*10^-3 / 3*10^8
B(max) = 9*10^-12 T
c) and lastly,
1T = 1 (V.s/m^2)
Answer:
B
Explanation:
You would have rain. You would have clouds, precipitation, and strong winds.
The magnetic force (Lorentz force) experienced by the proton in the magnetic field is given by

since

, because the velocity v and the force F in this problem are perpendicular, and so also the angle

between the velocity and the magnetic field B should be

.
Let's find the magnitude of the magnetic field; this is given by

To understand the direction, let's use the right-hand rule:
-index finger: velocity
- middle finger: magnetic field
- thumb: force
Since the velocity (index) points east and the force (thumb) points south, then the magnetic field (middle finger) points downwards. So we write:
B = -0.091 T