Answer:
0.2943 Nm
Explanation:
Work done is given a the product of force and diatance moved and expressed by the formula
W=Fd
Here W represent work, F is applied force and d is perpendicular distance
Also, we know that F=mg where m is the mass of an object and g is acceleration due to gravity. Substituting this back into the initial equation then
W=mgd
Taking acceleration due to gravity as 9.81 m/s2 and substituting mass with 0.1 kg and distance with 0.3 m then
W=0.1*9.81*0.3=0.2943 Nm
Explanation:
Unclear question. The clear rendering reads;
"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?
Answer:
Yes it is possible
Explanation:
When two equal magnitude forces are acting on the rod in opposite direction
Then the net force on the system is always zero in that case
so we will have

now for the system net torque due to these forces is given by

here we know that
= distance of the forces from reference about which torque is measured
so here we can say that net force is zero on the system while torque is not zero
in all such case object will rotate about a fixed position with change angular speed
Answer:
342,000kg
Explanation:
p=mv
8.55*10^7 kg*m/s=m(900 km/h)
85,500,000 kg*m/s=m(900 km/h)
(85,500,000 kg*m/s)/(900 km/h)=m
Get same units.... 900km/h = 250m/s
m/s cancel in the division, you are left with just kg!!
85,500,000/250=342,000kg! That's it!
B represents the direction of the magnetic field around the wire
Explanation:
A wire carrying an electric current always produces a magnetic field around itself. The lines of the magnetic field produced by a current-carrying wires are concentric circles around the wire. The magnitude of the field is given by the formula:

where
is the vacuum permeability
I is the current in the wire
r is the distance from the wire
The direction of the field lines is given by the so-called right hand rule, shown in the figure. Basically, the thumb of the right hand is placed in the direction of the electric current, while the other fingers are "wrapped" around the thumb: the direction of the other fingers give the direction of the magnetic field lines.
Learn more about magnetic field:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly