Force acting on the body when the body is at rest the net formals is given
The statement above is FALSE.
Temperature is the degree of coldness or hotness of a body while heat transfer is the transfer of thermal energy from one object to another object. Temperature tells us how cold or hot a body is and it can be measured in Celsius, Kelvin or Fahrenheit. The thermometer is the instrument that is used in the measurement of temperature. Change in temperature is an important indicator that is used in various ways in humans and external systems.
Answer:
Mn (s) + NiCl2 (aq) → MnCl2 (aq) + Ni
Explanation:
The order of displacement of metals from aqueous solution by another metal is defined by the activity series of metals.
The activity series arranges metals in order of reactivity and increasing electrode potentials. The less negative the electrode potential of a metal is, the less reactive it is and the lower it is found in the activity series.
Nickel has a less negative electrode potential than manganese hence it is displaced from an aqueous solution of its salt by manganese spontaneously.
Answer:
When octane and oxygen gas are burned in our cars, carbon dioxide and water come out of the exhaust. The increase in carbon dioxide in the atmosphere is causing global warming. 4.
Explanation:
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.