Explanation:
q = mCΔT
where q is heat,
m is mass,
C is specific heat capacity,
and ΔT is temperature change.
For the first ball:
2500 J = (100 g) C (90°C − 25°C)
C = 0.385 J/g/°C
For the second ball:
5000 J = (200 g) C (90°C − 25°C)
C = 0.385 J/g/°C
The two metals have the same specific heat, and are likely the same metal (possibly copper or zinc).
Lower frequency waves have less strength to penetrate. How bad a wave is all depends on how well it penetrates our bodies. Visible light doesn't penetrate ur skin, but UV rays (higher than visible) can go through our skin, making it <span>bad" for us. High frequency waves have more energy and move faster</span>
Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
Answer:
As a substance reaches the melting point, the particles begin to move faster, causing the substance to become a liquid.
Explanation:
lmk if you need a different or more detailed answer :)
have a wonderous day <3