Answer:
The answer is choice A.
Explanation:
Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.
I think it's something like electrons don't attract, cuz you know the saying "Opposites attract." Cause electrons are negative... Ahaha... sorry, I don't know the answer.
Answer:
Distance: 1600 m Displacement: 0
Explanation:
The distance is because He ran 400 meters 4 times getting 1600 m
4*400=1600
The displacement is 0 because displacement is the total distnce away from the starting point and since he ran laps around the track in the end he ended up in the same spot as last time.
Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.