We can use the equation

to calculate the frequency.
Rearranging this gives us

.
So the frequency is

, which equals 0.42 hertz
(to 2 decimal places).
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.
Answer:
THES IS NOT
Explanation:
THIS PAPAER IS A FAKE PAPAER BEACISE POGI TALAGA AKO
The particles that are usually in a much higher energy usually comes from the magnetic field of the Earth in which it is trapped consisting the Van Allen radiation belts. In addition to that, these radiation belts are somewhat essential because it protects satellites orbiting the Earth from the Sun's high energy radiation.
Answer:
a. 78 degree
Explanation:
According to Snell's Law, we have:
(ni)(Sin θi) = (nr)(Sin θr)
where,
ni = Refractive index of medium on which light is incident
ni = Refractive index of ethyl alcohol = 1.361
nr = Refractive index of medium from which light is refracted
nr = Refractive index of ethyl alcohol = 1.333
θi = Angle of Incidence
θr = Angle of refraction
So, the Angle of Incidence is know as the Critical Angle (θc), when the refracted angle becomes 90°. This is the case of total internal reflection. That is:
θi = θc
when, θr = 90°
Therefore, Snell's Law becomes:
(1.361)(Sin θc) = (1.333)(Sin 90°)
Sin θc = 1.333/1.361
θc = Sin⁻¹ (0.9794)
θc = 78.35° = 78° (Approximately)
Therefore, correct answer will be:
a. <u>78 degree</u>