1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
10

What effects does the conductor have on the potential field?

Physics
1 answer:
liraira [26]3 years ago
8 0
Type of conductors determines rate of flow of current
You might be interested in
In stars mor massive than the sun, fusion continues until the core is almost all....
serious [3.7K]
In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.

Most of the fusion occurs in the core.

In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.

Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.

Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.

After the core is almost entirely iron, the star is no longer in the Main Sequence.

So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
3 0
3 years ago
g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
krok68 [10]

Answer:

r = 4.21 10⁷ m

Explanation:

Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining

            T² = (\frac{4\pi }{G M_s} ) r³             (1)

           

in this case the period of the season is

            T₁ = 93 min (60 s / 1 min) = 5580 s

            r₁ = 410 + 6370 = 6780 km

            r₁ = 6.780 10⁶ m

for the satellite

           T₂ = 24 h (3600 s / 1h) = 86 400 s

if we substitute in equation 1

            T² = K r³

            K = T₁²/r₁³

            K = \frac{ 5580^2}{ (6.780 10^6)^2}

            K = 9.99 10⁻¹⁴ s² / m³

we can replace the satellite values

            r³ = T² / K

            r³ = 86400² / 9.99 10⁻¹⁴

            r = ∛(7.4724 10²²)

            r = 4.21 10⁷ m

this distance is from the center of the earth

7 0
3 years ago
When the weight of the object increase block what is the force of friction applied? Explanation?
erik [133]

Answer:

There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.

8 0
2 years ago
The table below shows some common animals and their hearing range in Hertz (Hz). Animal Hearing Range in Rate of Vibrations per
kap26 [50]

Answer:

D

Explanation:

If you list and compare, the elephants hearing range is the closest to a humans.

Humans: 20-20,000

Elephant: 16-12,000

While the others are either too much more or less than a humans.

Bat: 2,000-110,000

Dolphin: 90-105,000

Chicken: 125-2,000

5 0
3 years ago
Sound enters the ear, travels through the auditory canal, and reaches the eardrum. The auditory canal is approximately a tube op
Juliette [100K]

Answer:

The fundamental frequency of can is 2.7 kHz.                          

Explanation:

Given that,

A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm

The speed of sound is, v = 336 m/s

We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

f=\dfrac{v}{4l}\\\\f=\dfrac{336}{4\times 3.1\times 10^{-2}}\\\\f=2709.67\ Hz\\\\f=2.7\ kHz

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • Tectonic plates can include
    9·2 answers
  • 20 POINTS!! What does this picture look like ???
    8·1 answer
  • The human ear canal is about 2.3 cm long. If it is regarded as a tube open at one end and closed at the eardrum, what is the fun
    13·1 answer
  • The color of an object that the human eye senses depends on the color of light that shines on the object and the color of light
    5·2 answers
  • Ruby is out with her friends. Misfortune occurs and
    6·1 answer
  • Contrast electron movement within conductors and insulators.
    13·2 answers
  • A simple pendulum with a length of 2 m oscillates on the Earth's surface. What is the period of oscillations?
    13·1 answer
  • The area vector of a square loop of 5 turns of a conductor each with side length of 0.2 m carrying a current of 2 A is antiparal
    7·1 answer
  • If an athlete takes 60s to complete a race of 300m find his speed
    7·1 answer
  • Three masses are connected via light strings and an ideal pulley, as shown below. Mass m2 is twice as massive as m1; m3 is three
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!