Answer:
a) a = 3.06 10¹⁵ m / s
, b) F= 1.43 10⁻¹⁰ N, c) F_total = 14.32 10⁻²⁶ N
Explanation:
This exercise will average solve using the moment relationship.
a ) let's use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- m v₀
F = m (v_{f} -v₀o) / t
in the exercise indicates that the speed module is the same, but in the opposite direction
F = m (-2v) / t
if we use Newton's second law
F = m a
we substitute
- 2 mv / t = m a
a = - 2 v / t
let's calculate
a = - 2 4.59 10²/3 10⁻¹³
a = 3.06 10¹⁵ m / s
b) F= m a
F= 4.68 10⁻²⁶ 3.06 10¹⁵
F= 1.43 10⁻¹⁰ N
c) if we hit the wall for 1015 each exerts a force F
F_total = n F
F_total = n m a
F_total = 10¹⁵ 4.68 10⁻²⁶ 3.06 10¹⁵
F_total = 14.32 10⁻²⁶ N
Answer:
d- Earth revolves around the sun.
Explanation:
Earth rotation can be defined as the amount of time taken by planet earth to complete its spinning movement on its axis.
This ultimately implies that, the rotation of earth refers to the time taken by earth to rotate once on its axis. One spinning movement of the earth on its axis takes approximately 24 hours to complete with respect to the sun.
On the other hand, earth revolution can be defined as a complete trip along a path around the sun. This path is known as an orbit and it typically takes the Earth 365¼ days to complete it's journey around the Sun.
When a constellation (stars) changes its position in the sky, at the same time of the evening and over a period of several weeks; it ultimately implies or is an evidence that Earth revolves around the sun.
Answer:
Explanation:
The path length difference = extra distance traveled
The destructive interference condition is:

where m =0,1, 2,3........
So, ←
![\Delta d = (m+1/2)\lamb da9/tex]so [tex]\Delta d = \frac{\lambda}{2}](https://tex.z-dn.net/?f=%5CDelta%20d%20%3D%20%28m%2B1%2F2%29%5Clamb%20da9%2Ftex%5D%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3Eso%20%3C%2Fstrong%3E%5Btex%5D%5CDelta%20d%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%7D)
⇒ λ = 2Δd = 2×10 = 20
Answer:
D. Friction
Explanation:
Friction is a force that opposes motion. So a perpetual motion machine can never be built because it is impossible to eliminate frictional force. It can only be reduced
Answer:
T= 38.38 N
Explanation:
Here
mass of can = m = 3 kg
g= 9.8 m/sec2
angle θ = 40°
From figure we see the vertical and horizontal component of tension force T
If the can is to slip - then horizontal component of tension force should become equal to force of friction.
First we find force of friction
Fs= μ R
where
μ = 0.76
R = weight of can = mg = 3 × 9.8 = 29.4 N
Now horizontal component of tension
Tx= T cos 40 = T× 0.7660 N
==>T× 0.7660 = 29.4
==> T= 38.38 N