Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.
Debate is the correct answer
NOT counterclaim, rebuttal or resolution
Answer:
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Explanation:
<u>Step 1</u>: Write a properly balanced equation with states:
K2SO4(aq) + Srl2(aq) → 2KI(aq) + SrSO4(s)
<u>Step 2</u>: write the full ionic equation with states. Remember to keep molecules intact. Only states (aq) will dissociate, (s) will not dissociate
. This means SrSO4 won't dissociate.
2K+(aq) + SO42-(aq) + Sr 2+(aq) + 2I-(aq) → 2K+(aq) + 2I-(aq) + SrSO4(s)
<u>Step 3</u>: Balanced net ionic equation
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Answer : Yes, a precipitate form when a solution of calcium chloride and a solution of mercury(I) nitrate are mixed together.
The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The given balanced ionic equation will be,

The ionic equation in separated aqueous solution will be,

In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,
