The mass of ammonium chloride that must be added is : ( A ) 4.7 g
<u>Given data :</u>
Volume of water ( V ) = 250 mL = 0.25 L
pH of solution = 4.85
Kb = 1.8 * 10⁻⁵
Kw = 10⁻¹⁴
Given that the dissolution of NH₄Cl gives NH₄⁺⁺ and Cl⁻ ions the equation is written as :
NH₄CI + H₂O ⇄ NH₃ + H₃O⁺
where conc of H₃O⁺
[ H₃O⁺ ] =
and Ka = Kw / Kb
∴ Ka = 5.56 * 10⁻¹⁰
Next step : Determine the concentration of H₃O⁺ in the solution
pH = - log [ H₃O⁺ ] = 4.85
∴ [ H₃O⁺ ] in the solution = 1.14125 * 10⁻⁵
Next step : Determine the concentration of NH₄CI in the solution
C = [ H₃O⁺ ]² / Ka
= ( 1.14125 * 10⁻⁵ )² / 5.56 * 10⁻¹⁰
= 0.359 mol / L
Determine the number of moles of NH₄CI in the solution
n = C . V
= 0.359 mol / L * 0.25 L = 0.08979 mole
Final step : determine the mass of ammonium chloride that must be added to 250 mL
mass = n * molar mass
= 0.08979 * 53.5 g/mol
= 4.80 g ≈ 4.7 grams
Therefore we can conclude that the mass of ammonium chloride that must be added is 4.7 g
Learn more about ammonium chloride : brainly.com/question/13050932
Hey there!:
8) ΔTb = i*Kb*m
m is molality
Since same number of mol is added to same amount of water in both cases
m will be same for both
is 1 for glucose since it is covalent compound
is 4 of Al(NO3)3 as it breaks into 1 Al₃⁺ and 3 NO₃⁻
So, ΔTb will be 4 times in aluminum nitrate case
So, boiling point will change by 4ºC
9) use Q = m* L
L = heat of vaporization so:
T1=T2=100ºC
5.40 * 1000 => 5400 cal/g
Q = 5400 / 540
Q = 10 grams
Hope that thlps!
Answer:
True
Explanation:
In an uncompetitive inhibition, initially the substrate [S] binds to the active site of the enzyme [E] and forms an enzyme-substrate activated complex [ES].
The inhibitor molecule then binds to the enzyme- substrate complex [ES], resulting in the formation of [ESI] complex, thereby inhibiting the reaction.
This inhibition is called uncompetitive because the inhibitor does not compete with the substrate to bind on the active site of the enzyme.
Therefore, in an uncompetitive inhibition, the inhibitor molecule can not bind on the active site of the enzyme directly. The inhibitor can only bind to the enzyme-substrate complex formed.
Answer:
Prophase
Explanation:
During prophase, the chromosomes condense, the nucleolus disappears, and the nuclear envelope breaks down.