Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:6 atoms
Explanation:Each NaOH has one Na and one O and one H. Therefore, 2 NaOH has 6 atoms.
Answer:
d. 12.3 grams of Al2O3
Explanation:
Based on the reaction:
4Al + 3O2 → 2Al2O3
<em>Where 4 moles of Al reacts in excess of oxygen to produce 2 moles of aluminium oxide.</em>
<em />
To solve this question we must find the moles of Aluminium. With these moles we can find the moles of aluminium oxide using the reaction:
<em>Moles Al -Molar mass: 26.9815g/mol-</em>
6.50g * (1mol / 26.9815g) = 0.241 moles Al
<em>Mass Al₂O₃ -Molar mass: 101.96g/mol-</em>
0.241 moles Al * (2 mol Al2O3 / 4 mol Al) = 0.120 moles Al2O3
0.120 moles Al2O3 * (101.96g / mol) =
12.3g of Al2O3 are produced.
Right answer is:
<h3>d. 12.3 grams of Al2O3
</h3>
Answer:
See the answer below
Explanation:
The chaparral biome is a temperate biome with a characteristic high temperature and dryness during summer and mild rainy winters and springs. The biome can be found in relatively small amounts in the major continents of the world with its rich plant and animal diversity who have successfully adapted to the conditions of the biome.
Due to the high biodiversity of the chaparral biome, <u>one would expect it to be resilient to the loss of a single species.</u> <em>The more the biodiversity of a biome or community, the more resilient such biome or community would be to the loss of species and lower the biodiversity, the more sensitive the community would be to the loss of species. </em>
Answer:
The volume will also decrease.
Explanation:
This illustration clearly indicates Boyle's law.
Boyle's law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, provided the pressure remains constant. Mathematically, it is represented as:
V & T
V = KT
K = V/T
V1/T1 = V2/T2 =... = Vn/Tn
Where:
T1 and T2 are the initial and final temperature respectively, measured in Kelvin.
V1 and V2 are the initial and final volume of the gas respectively.
From the illustration above, the volume is directly proportional to the temperature. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume also will decrease.