Answer:
The ladder is moving at the rate of 0.65 ft/s
Explanation:
A 16-foot ladder is leaning against a building. If the bottom of the ladder is sliding along the pavement directly away from the building at 2 feet/second. We need to find the rate at which the top of the ladder moving down when the foot of the ladder is 5 feet from the wall.
The attached figure shows whole description such that,
.........(1)

We need to find,
at x = 5 ft
Differentiating equation (1) wrt t as :



Since, 

At x = 5 ft,


So, the ladder is moving down at the rate of 0.65 ft/s. Hence, this is the required solution.
It's B because when you throw something it doesn't go up it slowly descends downward
The time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds
<h3>How to calculate the time</h3>
Use the formula:
Power × time = mass × specific heat
Given mass = 1. 5kg
Specific latent heat of vaporization = 4000000 J/ Kg
Power = 2500 W
Substitute the values into the formula
Power × time = mass × specific heat
2500 × time = 1. 5 × 4000000
Make 'time' the subject
time = 1. 5 × 4000000 ÷ 2500 = 6000000 ÷ 2500 = 2400 seconds
Therefore, the time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds.
Learn more about specific latent heat of vaporization:
https://brainly.in/question/1580957
#SPJ1
Answer:8 m/s
Explanation:
Given


kinetic Energy of 
initially
is at rest and let say
is moving with velocity u
kinetic Energy of 


In Completely inelastic collision both mass stick together and move with common velocity
Suppose v is the common velocity


therefore Final velocity with which both blocks moves is 1 m/s