The concentration of a and b will decrease while c will increase provided all other physical quantities are kept constant in the reaction
By using the ICE table :
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
A chemical reaction that removes electrons from an atom is called "O<span>xidation".
The term came from late 18th century from French.
When the electrons are removed from an atom it increase its valence.</span>
Answer:
150.1 mL
Explanation:
Step 1: Given data
- Density of benzene (ρ): 0.879 g/mL
- Mass of the sample of benzene (m): 131.9 g
- Volume of the sample of benzene (V): ?
Step 2: Calculate the volume of the sample of benzene
Density is an intrinsic property. It is equal to the quotient between the mass and the volume of the sample of benzene.
ρ = m/V
V = m/ρ
V = 131.9 g/(0.879 g/mL)
V = 150.1 mL
621.4L
Explanation:
Given parameters:
Initial volume = 547L
Initial temperature = 331K
Final temperature = 376K
Unknown:
Final volume = ?
Solution:
The appropriate gas law to use is the Charles's law.
The Charles's law shows the relationship between the volume and temperature of a gas under constant pressure.
The law states that "The volume of a fixed of a gas varies directly as its absolute temperature if the pressure is constant".
Mathematically;

V₁ is the initial volume
T₁ is the initial temperature
V₂ is the final volume
T₂ is the final temperature
Since the unknown is the final volume, we make it the subject of the expression;
V₂ = 
V₂ = 621.4L
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly