Here, we are required to find the equation, in terms of w, that could be used to find the dimensions of the storage unit in feet.
The polynomial is;. 3w³ + 22w + 24w = 5440ft³.
From the question;
- <em>Let the width = w</em>
- <em>length,</em><em> </em><em>l</em><em> = 3w + 4</em>
- <em>height,</em><em> </em><em>h</em><em> = w + 6</em>
<em>The </em><em>volume </em><em>of </em><em>a </em><em>rectangular</em><em> </em><em>prism </em><em>is </em><em>given </em><em>by </em><em>the </em><em>product </em><em>of </em><em>its </em><em>length,</em><em> </em><em>width </em><em>and </em><em>height.</em><em> </em><em>Thus</em><em>;</em>
Volume = l × w × h
Therefore, Volume, V = (3w +4) × w × (w +6)
To obtain the required polynomial, we expand the expression for Volume above;
<em>V = (3w² + 4w) × (w + 6)</em>
<em>V = (3w² + 4w) × (w + 6)V = 3w³ + 22w² + 24w.</em>
However, the volume of the rectangular prism has been given to be 5440 cubic feet.
Therefore, the polynomial is;
3w³ + 22w + 24w = 5440ft³.
Read more:
brainly.com/question/9740998
Answer:
$0.75
Step-by-step explanation:
Given
Normal price - $3.70
If Hamburger is on sale for 20% off the normal price
The amount that can be saved will be 20% of $3.70
Amount that can be saved = 20/100 * 3.70
Amount that can be saved = 1/5 * 3.70
Amount that can be saved = 3.7/5
Amount that can be saved = 0.75
Hence the Amount that can be saved on $3.70 is $0.75
You get the whole numbers (1's) out of it and show the left over fraction next to it. (e.g. there is 7/3 as a mixed number is 2 1/3 )
Answer:
<h2>Solution: Since, the prime factors of 226 are 2, 113. Therefore, the product of prime factors = 2 × 113 = 226.</h2>
Step-by-step explanation:
<h2>(。♡‿♡。)______________________</h2><h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> M</u></em><em><u> </u></em><em><u> </u></em><em><u>E </u></em><em><u>AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>