Spread or you can say forward
Answer:
Be sure you understand two optics principles: the focal length of a convex mirror is NEGATIVE (by convention) and R / 2 = f.
Find f, take its negative, plug in the mirror equation and obtain Di = - 24 cm. This indicates that the image is virtual (as it should be in a convex mirror), is erect (as all virtual images are), is diminished (as it should be) and INSIDE the mirror as it should be.
Explanation:
Answer:
≈ 6.68 m/s
Explanation:
A suitable formula is ...
vf^2 -vi^2 = 2ad
where vi and vf are the initial and final velocities, a is the acceleration, and d is the distance covered.
We note that if the initial launch direction is upward, the velocity of the ball when it comes back to its initial position is the same speed, but in the downward direction. Hence the problem is no different than if the ball were initially launched downward.
Then ...
vf = √(2ad +vi^2) = √(2·9.8 m/s^2·1.0 m+(5 m/s)^2) = √44.6 m/s
vf ≈ 6.68 m/s
The ball hits the ground with a speed of about 6.68 meters per second.
__
We assume the launch direction is either up or down.
Answer:
Explanation:
Here's the info we have:
initial velocity is 20 m/s;
final velocity is our unknown;
displacement is -10.2 m; and
acceleration due to gravity is -9.8 m/s/s. Using the one-dimensional equation
v² = v₀² + 2aΔx and filling in accordingly to solve for v:
Rounding to the correct number of sig fig's to simplify:
to get
v =
If you don't round like that, the velocity could be 24, or it could also be 24.5 depending on how your class is paying attention to sig figs or if you are at all.
So either 20 m/s or 24 m/s
Answer:
A stone on the ground does not have zero energy…there is an internal potential in every object. Aldo is not in action or in any mechanical motion it is being acted upon by gravity and also molecular forces and energy.
<em>Hope</em><em> </em><em>this</em><em> helps</em><em> </em><em>!</em>