The characteristics of electromagnetic waves typically represent as follows:
- There are changes in the electric and magnetic fields simultaneously so that both fields have maximum and minimum values at the same time and place.
- The direction of the electric field and the magnetic field are perpendicular to each other. The direction of both is perpendicular to the direction of the wave propagation.
- The shape of electromagnetic waves is transverse waves.
- It has general wave characteristics like polarization, reflection, refraction, interference, and diffraction.
- The amount of the electric field (E) is directly proportional to the magnitude of the magnetic field, with the relationship E = cB.
- The universal constant of the velocity of electromagnetic waves in a vacuum is

- The speed at which electromagnetic waves propagate depends merely on the electrical and magnetic properties of the medium that it travels on.
- Because electromagnetic waves do not contain an electric charge, they do not experience any possible deviation in the electric or magnetic fields.
<h3>Further explanation</h3>
- Two physicists who contributed significantly to developing the concept of electromagnetic waves are Faraday and Maxwell around 1831-1864.
- From the observations, Faraday suggested that changes in the magnetic field cause an electric charge to flow in the loop of wire, contributing in the emergence of an electric field.
- Maxwell proposed a reverse process, which is a change in the electric field will generate a magnetic field.
- As follows, according to Faraday's Law, changes in sinusoidal magnetic fields generate electric fields which also change sinusoidally.
- Meantime, according to Maxwell's Hypothesis, changes in sinusoidal electric fields generate magnetic fields which also change sinusoidally.
- Furthermore, there is a process of combining electric and magnetic fields that propagate in all directions called electromagnetic waves.
<h3>Learn more </h3>
- About vector components brainly.com/question/1600633
- Determine the shortest wavelength in electron transition brainly.com/question/4986277
- Particle's speed and direction of motion brainly.com/question/2814900
Keywords: the characteristics, electromagnetic waves, transverse, vacuum, electric fields, magnetic, perpendicular, propagation, Maxwell, Faraday, the speed, polarization, reflection, refraction, interference, and diffraction
Answer:
reduce the velocity of collision
The compound is (Sulphuric Acid) H2SO4. On reacting with (Sodium Hydroxide) NaOH, it gives (2 Water Molecules/Colored) 2H2O and (1 Sodium Sulfate Molecule/Salt) Na2SO4
H2SO4 + NaOH —> 2H2O (aq.) + Na2SO4 (salt)
The resulted salt/compound (Na2SO4) when reacting with Methyl Orange (MO) is called ”Removal of methyl orange dye and Na2SO4 salt from synthetic wastewater using reverse osmosis (RO)”
The efficiency of reverse osmosis (RO) membranes used for treatment of colored water effluents can be affected by the presence of both salt and dyes.
Concentration polarization of each of the dye and the salt and the possibility of a dynamic membrane formed by the concentrated dye can affect the performance of the RO membrane.
The objective of the current work was to study the effect of varying the Na2SO4 salt and methyl orange (MO) dye concentrations on the performance of a spiral wound polyamide membrane.
The work also involved the development of a theoretical model based on the solution diffusion (SD) mass transport theory that takes into consideration a pressure dependent dynamic membrane resistance as well as both salt and dye concentration polarizations.
Control tests were performed using distilled water, dye/water and salt/water feeds to determine the parameters for the model.
The experimental results showed that increasing the dye concentration from 500 to 1000 ppm resulted in a decrease in the salt rejection at all of the operating pressures and for both feed salt concentrations of 5000 and 10,000 ppm.
Increasing the salt concentration from 5000 to 10,000 ppm resulted in a slight decrease in the percent dye removal. The model’s results agreed well with these general trends.
Answer:
Frequency is <u>the number of waves</u> that move past a point during a specific amount of time. Frequency is measured in <u>Hertz</u>, and is classified as high, medium, or low. Frequency is interpreted as the <u>pitch</u> of a sound. Intensity refers to the <u>loudness</u> of a sound and is measured in <u>decibels</u>. Louder sounds <u>increase</u> the rate of nerve signals relayed to the brain.
Explanation:
Radio waves have the longest wavelengths