1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
14

What is the difference between a Datum and a Datum Feature? a) A Datum and Datum Feature are synonymous. b) A Datum is theoretic

al, a Datum Feature is real. c) A Datum is a feature of size, and a Datum Feature is a surface feature. d) A Datum Feature is theoretical, and a Datum is real.
Engineering
1 answer:
aliina [53]3 years ago
7 0

Difference between Datum and Datum feature is<em> 'Datum is theoretical and Datum feature is real'. </em>

Option: (b)

<u>Explanation:</u>

A Datum is a perfect plane, line, point or surface but only occurs theoretically.

However a Datum Feature is fully based on a tangible surface, axis or point on a part where that theoretical datum is located.

The reason behind in this is they are not equal to each other because the 'part surface' is never 100% perfect.

The important functional features of the Datum is controlled during measurements.

You might be interested in
A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
Sergeu [11.5K]

To solve the problem it is necessary to consider the concepts and formulas related to the change of ideal gas entropy.

By definition the entropy change would be defined as

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{P_2}{P_1})

Using the Boyle equation we have

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{v_1T_2}{v_2T_1})

Where,

C_p = Specific heat at constant pressure

T_1= Initial temperature of gas

T_2= Final temprature of gas

R = Universal gas constant

v_1= Initial specific Volume of gas

v_2= Final specific volume of gas

According to the statement, it is an isothermal process and the tank is therefore rigid

T_1 = T_2, v_2=v_1

The equation would turn out as

\Delta S = C_p ln1-ln1

<em>Therefore the entropy change of the ideal gas is 0</em>

Into the surroundings we have that

\Delta S = \frac{Q}{T}

Where,

Q = Heat Exchange

T = Temperature in the surrounding

Replacing with our values we have that

\Delta S = \frac{230kJ}{(30+273)K}

\Delta S = 0.76 kJ/K

<em>Therefore the increase of entropy into the surroundings is 0.76kJ/K</em>

8 0
3 years ago
Can you give me examples of reciprocating motion?
tensa zangetsu [6.8K]

Answer:

Other examples of reciprocating motion include piston pumps and compressors, roller pressure and tensioning systems, material testing devices, and insertion machines.

Explanation:

6 0
3 years ago
Construct a Mohr circle for the stress element at A in problem 2. Using ruler and compass, draw the Mohr circle to the scale. Dr
serious [3.7K]

Answer:

hello your question is incomplete attached below is the missing diagram to the question and the detailed solution

Answer : principal stresses : 0.82 MPa, -33.492 MPa

              shear stress = 17.157 MPa

              ∅ = 9.09 ≈ 10°

Explanation:

The principal stress ( б1 ) = 0.82 MPa

                                 ( б2 ) = -33.492 MPa

The shear stress = 17.157 MPa

∅ = 9.09 ≈ 10°

attached below is the detailed solution and the Mohr's circle

7 0
3 years ago
An incompressible fluid flows between two infinite stationary parallel plates. The velocity profile is given by u=umaxðAy2 + By+
nexus9112 [7]

Answer:

the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

Explanation:

From the question; the  equations of the velocities profile in the system are:

u = u_{max}(Ay^2+By+C)   ----- equation (1)

The above boundary condition can now be written as :

At y= 0; u =0           ----- (a)

At y = h; u =0            -----(b)

At y = \frac{h}{2} ; u = u_{max}     ------(c)

where ;

A,B and C are constant

h = distance between two plates

u = velocity

u_{max} = maximum velocity

y = measured distance upward from the lower plate

Replacing the boundary condition in (a) into equation (1) ; we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*0+B*0+C) \\ \\ 0=u_{max}C \\ \\ C= 0

Replacing the boundary condition (b) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*h^2+B*h+C) \\ \\ 0 = Ah^2 +Bh + C \\ \\ 0 = Ah^2 +Bh + 0 \\ \\ Bh = - Ah^2 \\ \\ B = - Ah   \ \ \ \ \   --- (d)

Replacing the boundary condition (c) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ u_{max}= u_{max}(A*(\frac{h^2}{2})+B*\frac{h}{2}+C) \\ \\ 1 = \frac{Ah^2}{4} +B \frac{h}{2} + 0 \\ \\ 1 =  \frac{Ah^2}{4} + \frac{h}{2}(-Ah)  \\ \\ 1=  \frac{Ah^2}{4}  - \frac{Ah^2}{2}  \\ \\ 1 = \frac{Ah^2 - Ah^2}{4}  \\ \\ A = -\frac{4}{h^2}

replacing A = -\frac{4}{h^2} for A in (d); we get:

B = - ( -\frac{4}{h^2})hB = \frac{4}{h}

replacing the values of A, B and C into the velocity profile expression; we have:

u = u_{max}(Ay^2+By+C) \\ \\ u = u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y)

To determine the volume flow rate; we have:

Q = AV \\ \\ Q= \int\limits^h_0 (u.bdy)

Replacing u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y) \ for \ u

\frac{Q}{b} = \int\limits^h_0 u_{max}(-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\  \frac{Q}{b} = u_{max}  \int\limits^h_0 (-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\ \frac{Q}{b} = u_{max} (-\frac{-4}{h^2}\frac{y^3}{3} +\frac{4}{h}\frac{y^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} =u_{max} (-\frac{-4}{h^2}\frac{h^3}{3} +\frac{4}{h}\frac{h^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} = u_{max}(\frac{-4h}{3}+\frac{4h}2} ) \\ \\ \frac{Q}{b} = u_{max}(\frac{-8h+12h}{6}) \\ \\ \frac{Q}{b} =u_{max}(\frac{4h}{6})

\frac{Q}{b} = u_{max}(\frac{2h}{3}) \\ \\ \frac{Q}{b} = \frac{2}{3} u_{max} h

Thus; the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

Consider the discharge ;

Q = VA

where :

A = bh

Q = Vbh

\frac{Q}{b}= Vh

Also;  \frac{Q}{b} = \frac{2}{3} u_{max} h

Then;

\frac{2}{3} u_{max} h = Vh \\ \\ \frac{V}{u_{max}}=\frac{2}{3}

Thus; the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

5 0
4 years ago
A 100 kmol/h stream that is 97 mole% carbon tetrachloride (CCL) and 3% carbon disulfide (CS2) is to be recovered from the bottom
Ugo [173]

Answer: oop

Explanation:oop

7 0
3 years ago
Other questions:
  • How much to build a barber clipper?
    10·1 answer
  • The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam
    9·1 answer
  • Under a construction management (CM) contract, should the CM firm's responsibilities normally begin at the construction phase, t
    5·1 answer
  • A structural component is fabricated from an alloy that has a plane-strain fracture toughness of 62 MPa1m. It has been determine
    6·1 answer
  • The costs of mining and transporting coal are roughly independent of the heating value of the coal. Consider:
    15·1 answer
  • Air enters a compressor at 100 kPa, 10°C, and 220 m/s through an inlet area of 2 m2. The air exits at 2 MPa and 240°C through an
    10·1 answer
  • How Many years of college do you have To do in order To become a video game developer and designer
    7·1 answer
  • Is the housekeeping satisfactory? ​
    10·2 answers
  • A mixture of octane, C8H18, and air flowing into a combustor has 60% excess air and 1 kmol/s of octane. What is the mole flow ra
    11·1 answer
  • What color is an orange? its for my 8th grade
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!