1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
4 years ago
12

Write a do-while loop that continues to prompt a user to enter a number less than 100, until the entered number is actually less

than 100. End each prompt with a newline. Ex: For the user input 123, 395, 25, the expected output is:
Enter a number (<100):
Enter a number (<100):
Enter a number (<100):
Your number < 100 is: 25
c++

#include
using namespace std;

int main() {
int userInput = 0;

do
cout << "Your number < 100 is: " << userInput << endl;

return 0;
}
Engineering
1 answer:
chubhunter [2.5K]4 years ago
8 0

Answer:

#include <iostream>//including iostream library to use functions such as cout and cin

using namespace std;

int main() {

int userInput = 0;

do

{

 cout << "Enter a number < 100: " ;

 cin >> userInput;

 if (userInput < 100)//condition if number is less than 100

 {

  cout << "Your number < 100 is: " << userInput << endl;

 }

} while (userInput > 100);//do while loop condition

return 0;

}

Explanation:

A do-while loop executes regardless in the first iteration. Once it has run through the first iteration, it checks if the condition is being met. If, the condition is TRUE, the loop begins the second iteration. If FALSE, the loop exits. In this case, the condition is the userInput. after the first iteration, lets say the userInput is 120, the condition userInput > 100 is true.Therefore, the loop will run again until eventually the number is less than hundred, lets say 25. In that case the condition would be 25 > 100, which would be false, so the loops will break.

You might be interested in
In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False
salantis [7]
Economic cost is a rescission making tangible factor true
8 0
3 years ago
Read 2 more answers
How can input from multiple individuals improve design solutions for problems that occur because of a natural disaster, such as
Alla [95]

Answer:

Map and avoid high-risk zones.

Build hazard-resistant structures and houses.

Protect and develop hazard buffers (forests, reefs, etc.)

Develop culture of prevention and resilience.

Improve early warning and response systems.

Build institutions, and development policies and plans.

Explanation:

5 0
3 years ago
What are the two main what are the two main concerns in the research of fluid power efficiency?
Galina-37 [17]

Answer:

The correct option is;

Materials and Components

Explanation:

The efficiency of fluid power is influenced by the components and the materials used to deliver the power of the fluid as such fluid power control are focused on

1) Advances in fluid power

2) Making use of the advantages

3) Making use of the other externally available technological advantages

4) Giving allowance for disadvantages

Areas of interest in advances in fluid power are;

a. Computer optimized flow

b. The use of new and improved materials/coatings

c. The use of components that save energy, such as intelligent supply pressure adapting systems

3 0
3 years ago
Read 2 more answers
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
4 years ago
Which contemporary jazz artist was one of the first to use a synthesizer in their recording
ivolga24 [154]

Answer:

In this era, Sun Ra was among the first of any musicians to make extensive and pioneering use of synthesizers and other various electronic keyboards; he was given a prototype Minimoog by its inventor, Robert Moog.

Explanation:

3 0
2 years ago
Other questions:
  • Complex poles cmd zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed open-loop mmsfer fuoc
    10·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • 5. Switch a in the circuit has been open for a long time and switch b has been closed for a long time. Switch a is closed at t =
    13·1 answer
  • A vehicle is moving at a velocity, v, given by v =12t - 3t2 ms-1. Use
    7·1 answer
  • Consider the cascade of the three LTI systems having impulse responses: h-1(t) = e^-tu(t + 3) h_2(t) = rect((1 -1)/2) h_3(t) = d
    8·1 answer
  • Water at 310 K and a flow rate of 4 kg/s enters an alumina tube (k=177Wm K1) with an inner diameter of 0.20 m and a wall thickne
    13·1 answer
  • What is the hardest part of thermodynamics?
    5·1 answer
  • What is another term for the notes that a reader can add to text in a word-processing document?
    11·2 answers
  • When bending metal, the material on the outside of the curve stretches while the material on the inside of the curve compresses.
    14·1 answer
  • based on the graph shown, for any given output level, the veritcal distance between the avc and the atc curves represents
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!