The answer is A. speed
hope this helps! :D
<span> For any body to move in a circle it requires the centripetal force (mv^2)/r.
In this case a ball is moving in a vertical circle swung by a mass less cord.
At the top of its arc if we draw its free body diagram and equate the forces in radial
direction to the centripetal force we get it as T +mg =(mv^2)/r
T is tension in cord
m is mass of ball
r is length of cord (radius of the vertical circle)
To get the minimum value of velocity the LHS should be minimum. This is possible when T = 0. So
minimum speed of ball v at top =sqrtr(rg)=sqrt(1.1*9.81) = 3.285 m/s
In the second case the speed of ball at top = (2*3.285) =6.57 m/s
Let us take the lowest point of the vertical circle as reference for potential energy and apllying the conservation of energy equation between top & bottom
we get velocity at bottom as 9.3m/s.
Now by drawing the free body diagram of the ball at the bottom and equating the net radial force to the centripetal force
T-mg=(mv^2)/r
We get tension in cord T=13.27 N</span>
Answer: D. Density of uranium within nuclear fuel rods is insufficient to become explosive
Explanation: Nuclear power plants use the same fuel as nuclear bombs, i.e. radioactive Uranium-235 isotope. However, in a nuclear power plant, the energy is released more slowly unlike in a nuclear bomb. <em>The energy released is through nuclear fission, and radioactive decay occurs at the same rate as in nuclear bombs. therefore, option A, B</em><em> </em><em>and C are incorrect.</em>
The primary reason why nuclear chain reactions within power plants do NOT produce bomb-like explosions is because the uranium fuel rods used in electricity generation is not sufficiently enriched in Uranium-235 to produce a nuclear detonation. This is the same idea in option D which is the correct option.
5 second fall starting at 0 m/s
ball strikes ground at a speed = 49 meters per second.