1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
4 years ago
9

Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu

lsion arising from the excess charge prevents the cells from clumping together. One cell carries −2.10 pC and the other −3.30 pC, and each cell can be modeled as a sphere 3.75×10−6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid.
Physics
1 answer:
Nastasia [14]4 years ago
6 0

Answer:

v = 302.923 m/s

Explanation:

We can answer this question using conservation of energy. Since there is no energy loss (e.g. no viscous drag) the energy when they are far apart and the energy when they barely touch must be the same.

The initial energy must be equal to the sum of their kinetic energies, since they are far apart to feel their electrical interaction.

Ei = (1/2)mv1^2 + (1/2)m*v2^2

Let us consider that they move with the same speed:

Ei = mv^2

If we consider the case when they barely touch, there won't be any kinetic energy, just pure electromagnetic energy:

Ef = k q1q2/(r1+r2) = k q1q2/(2r1)

Since Ei = Ef

v^2 = (k/m) q1q2/(2r1)

where

  k = 8.98755 x10^9 Nm^2/C^2

  m = 9.05 x10^-14 kg

  q1 = −2.10 pC

  q2 = −3.30 pC

  r1 = 3.75×10^−6 m

v^2 = 91762.4 m^2/s^2

v = 302.923 m/s

You might be interested in
Concerning the work done by a conservative force, which of the following statements, if any, are true? It can always be expresse
Vera_Pavlovna [14]

Answer:

It is independent of the path of the body and depends only on the starting and ending points.

Explanation:

In Physics we define a conservative force as a force that is independent of the path of the body and depends only on the starting and ending points.

For conservative forces we can write;

KEi + PEi = KEf +PEf

where;

KEi= initial kinetic energy

PEi= initial potential energy

KEf= final kinetic energy

PEf= final potential energy

This equation is known as the principle conservation of mechanical energy . It applies only to conservative forces where friction is negligible. The term KE + PE  is also known as the total mechanical energy of the system.

3 0
4 years ago
Without using a micrometer screw gauge, how do I find the average diameter of a long piece of thin wire using a metre rule and a
Mice21 [21]

Answer:

Wind the long piece of thin wire around the uniform glass rod multiple times, find the length of the total diameters using the metre ruler, and divide by the number of times you wound it around the rod.

Explanation:

Since the diameter of one long piece of thin wire is too thin to be measured by a metre ruler, you can wind it multiple times and push it side by side to get a length you can measure.

For example, if you wound it around 20 times and the total length of 20 diameters of the wire side-by-side is 2.0 cm, one winding, which is the diameter would be 2.0cm ÷ 20 = 0.10cm or 1mm.

5 0
3 years ago
The number of protons equals the atomic number. TRUE OR FALSE?
Shkiper50 [21]

Answer:

true

Explanation:

The number of protons, neutrons, and electrons in an atom can be determined from a set of simple rules. The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons.

5 0
3 years ago
Which best contrasts Newton's and Einstein's ideas?
Len [333]

Answer:

Newton believed that mass tells gravity how much force to exert. Einstein believed that mass tells space-time how to curve.

Explanation:

Isaac Newton believed that bodies on earth had a force of gravity pulling them down as a result of their masses.

Albert Einstein believed that the bodies were not pulled down but were moving around in a circular sphere/manner.

This confirms Newton believing that mass tells gravity how much force to exert and Einstein believing that mass tells space-time how to curve.

6 0
3 years ago
Read 2 more answers
using hooke's law, f spring = k triangle x, find the elastic constant of a spring that stretches 2 cm when a 4 newton force is a
Ksivusya [100]

As we know that spring force is given as

F = kx

here we know that

F = 4 N

x = 2 cm = 0.02 m

now from the above equation we will have

4 = k(0.02)

k = 200 N/m

so the elastic constant of the spring will be 200 N/m

8 0
3 years ago
Other questions:
  • a spring scale is constructed so that each 0.10-n increment is separated by 0.50 cm. what spring constant is necessary for the s
    13·1 answer
  • Consider a product with three components in​ series, with reliabilities of​ 0.90, 0.80, and 0.99 for components​ A, B, and​ C, r
    11·1 answer
  • A train moves from rest to a speed of 25 m/s in 30.0 seconds . What is the acceleration
    12·1 answer
  • How to draw a heating curve​
    13·1 answer
  • In which situation is the gravitational force between two objects hard to detect?
    14·2 answers
  • When charges build up on a surface they:
    6·2 answers
  • A cathedral hull allows a boat to do what?
    15·1 answer
  • As you go farther down the periodic table, the atoms get _______ and more ________.
    13·2 answers
  • Please answer I need help
    5·1 answer
  • a student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 19.5 m/s. the cliff is 24.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!