1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
4 years ago
7

And observer reviews for identical objects that are traveling at speed close to the speed of light in their legs be used to rank

the objects according to their speeds A. No the Lankes of the four objects should be the same regardless of the speed B. Yes the shortest object is traveling the fastest C. Yes the longest object is traveling the fastest D. No the length of each object demands on the frame of reference of the observer
Physics
1 answer:
soldier1979 [14.2K]4 years ago
5 0

Answer:

C :)

Explanation:

You might be interested in
During a rainy day, as a result of colliding clouds an observer saw lighting and a heard thunder sound. The time between seeing
hodyreva [135]

Answer:

d = 1700 meters

Explanation:

During a rainy day, as a result of colliding clouds an observer saw lighting and a heard thunder sound.  The time between seeing the lighting and hearing the sound was 5 second, t = 5 seconds

Speed of sound, v = 340 m/s (say)

Let d is the distance of the colliding cloud from the observer. The distance covered by the object. It is given by :

d=v\times t

d=340\ m/s\times 5\ s  

d = 1700 meters

So, the distance of the colliding cloud from the observer is 1700 meters. Hence, this is the required solution.    

8 0
3 years ago
A professional racecar driver buys a car that can accelerate at 5.9 m/s2. The racer decides to race against another driver in a
3241004551 [841]

Answer:

(a) Time will be t = 3.56 sec

(b) Distance traveled by car when they are side by side is 37.38712 m

(b) Velocity of race car = 21.004 m/sec

velocity of stock car = 12.816 m/sec            

Explanation:

We have given acceleration of the car a_1=5.9m/sec^2

Acceleration of the stock car a_2=3.6m/sec^2

When 1st car overtakes the second car then distance traveled by both the car will be same

(a) So s_1=s_2

As both car starts from rest so initial velocity of both car will be 0 m/sec

It is given that stock car leaves 1 sec before

So \frac{1}{2}\times 5.9\times t^2=\frac{1}{2}\times (t+1)^2\times 3.6

After solving t = 3.56 sec

(b) From second equation of motion s=ut+\frac{1}{2}at^2=0\times 3.56+\frac{1}{2}\times 5.9\times 3.56^2=37.38712m

(c) From first equation pf motion v = u+at

So velocity of race car v = 0+5.9×3.56 = 21.004 m/sec

Velocity of stock car v = 0+ 3.6×3.56 = 12.816 m/sec

3 0
3 years ago
Thermodynamic Processes: An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will
djyliett [7]

Answer:

The resulting pressure is 3 times the initial pressure.

Explanation:

The equation of state for ideal gases is described below:

P\cdot V = n \cdot R_{u}\cdot T (1)

Where:

P - Pressure.

V - Volume.

n - Molar quantity, in moles.

R_{u} - Ideal gas constant.

T - Temperature.

Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:

P_{1}\cdot V_{1} = P_{2}\cdot V_{2} (2)

If we know that \frac{V_{2}}{V_{1}} = \frac{1}{3}, then the resulting pressure of the system is:

P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)

P_{2} = 3\cdot P_{1}

The resulting pressure is 3 times the initial pressure.

4 0
3 years ago
A small circular coil of 5 turns of wire lies in a uniform magnetic field of 0.8 T, so that the normal to the plane of the coil
Travka [436]

Complete question:

A small circular coil of 5 turns of wire lies in a uniform magnetic field of 0.8 T, so that the normal to the plane of the coil makes an angle of 100◦ with the direction of B~ . The radius of the coil is 4 cm, and it carries a current of 1 A.

What is magnitude of the magnetic moment of the coil? Answer in units of A · m2.

Answer:

The magnetic moment of the coil is 0.0252 A.m²

Explanation:

Given;

radius of the coil, r = 4 cm = 0.04 m

number of turns of the coil, N = 5 turns

magnetic field strength B = 0.8 T

current in the coil, I = 1 A

Area of the coil, A = πr² = π(0.04)² = 0.00503 m²

magnetic moment of the coil, μ = NIA

where;

N is the number of turns

I is the current in the coil

A is the area of the coil

magnetic moment of the coil, μ = 5 x 1 x 0.00503 = 0.0252 A.m²

Therefore, the magnetic moment of the coil is 0.0252 A.m²

8 0
3 years ago
Can somebody help please !<br><br> a. -8.3 m/s<br> b.-4.2 m/s<br> c.-0.12 m/s<br> d. 0 m/s
Gnom [1K]
The answer is a
the \: answer \: is \: a.
4 0
3 years ago
Other questions:
  • A boy pulls a wagon full of newspapers down the sidewalk at a constant acceleration. Suddenly, half the newspapers fall off the
    5·1 answer
  • Figure 3 shows a stationary metal block hanging from the middle of a stretched wire which is suspended from a horizontal beam. T
    13·1 answer
  • Suppose you put in 100 j of work on a lever and get out 93 j of work. what is the efficiency of the lever and how much of the wo
    14·1 answer
  • Please Help, I need to turn this in today
    9·2 answers
  • The muzzle velocity of an armor-piercing round fired from an M1A1 tank is 1770 m/s (nearly 4000 mph or mach 5.2). A tank is at t
    7·1 answer
  • HELP FAST CORRECT ANSWERS ONLY
    6·2 answers
  • Help 30 points and willgive brainliest
    12·1 answer
  • A 1380 kg car starts from rest at the
    13·1 answer
  • The graph shows the amplitude of a passing wave over time in seconds (s) What is the approximate frequency of the wave shown? A.
    15·1 answer
  • The tropical easterlies blow away from the<br> equator<br> true or false?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!