applied forces would be push for example.
normal forces would seem to be a force such as gravity.
friction for example when you try to slide on carpet but the fabric or whatever its made of stops you.
Answer:
1) distance walked = 210 m
2) not sure
3) avg speed = total d/ total t = 210/52 = 4 m/s approx
4) For avg vel, use the formula - displacement/time
Explanation:
im not fully sure but i studied this last year
Answer:
Explanation:
velocity of light in a medium of refractive index V = V₀ / μ
V₀ is velocity of light in air and μ is refractive index of light.
time to travel in tube with air = length of tube / velocity of light
8.72 ns = L / V₀ L is length of tube .
time to travel in tube with jelly = length of tube / velocity of light
8.72+ 1.82 = L / V L is length of tube .
10.54 ns = L / V
dividing the equations
10.54 / 8.72 = V₀ / V
10.54 / 8.72 = μ
1.21 = μ
refractive index of jelly = 1.21 .
Answer:
Approximately
, assuming that the gravitational field strength is
.
Explanation:
Let
denote the required angular velocity of this Ferris wheel. Let
denote the mass of a particular passenger on this Ferris wheel.
At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:
- Weight of the passenger (downwards),
, and possibly - Normal force
that the Ferris wheel exerts on this passenger (upwards.)
This passenger would feel "weightless" if the normal force on them is
- that is,
.
The net force on this passenger is
. Hence, when
, the net force on this passenger would be equal to
.
Passengers on this Ferris wheel are in a centripetal motion of angular velocity
around a circle of radius
. Thus, the centripetal acceleration of these passengers would be
. The net force on a passenger of mass
would be
.
Notice that
. Solve this equation for
, the angular speed of this Ferris wheel. Since
and
:
.
.
The question is asking for the angular velocity of this Ferris wheel in the unit
, where
. Apply unit conversion:
.