Answer:
4909.486Kj/mol
Explanation:
the heat would be required to change steam at 100°c to water at 100°c then change the water at that temperature to water at 0°c then change water at 0°c to ice at 0°c then ice at 0°c to ice at -15°c
<u>Answer:</u> The final temperature of the coffee is 43.9°C
<u>Explanation:</u>
To calculate the final temperature, we use the equation:

where,
q = heat released = 
m = mass of water = 10.0 grams
C = specific heat capacity of water = 4.184 J/g°C
= final temperature = ?
= initial temperature = 20°C
Putting values in above equation, we get:

Hence, the final temperature of the coffee is 43.9°C
Lipids are insoluble in water and they produce twice as more energy as carbohydrates.
Answer: The new volume is 72 ml
Explanation:
To calculate the final volume of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:
Putting values in above equation, we get:
Thus the new volume is 72 ml
Answer: The potential of the following electrochemical cell is 1.08 V.
Explanation:
=-0.74V[/tex]
=0.34V[/tex]
The element with negative reduction potential will lose electrons undergo oxidation and thus act as anode.The element with positive reduction potential will gain electrons undergo reduction and thus acts as cathode.
Here Cr undergoes oxidation by loss of electrons, thus act as anode. copper undergoes reduction by gain of electrons and thus act as cathode.


Where both
are standard reduction potentials, when concentration is 1M.
![E^0=E^0_{[Cu^{2+}/Ni]}- E^0_{[Cr^{3+}/Cr]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BCu%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BCr%5E%7B3%2B%7D%2FCr%5D%7D)

Thus the potential of the following electrochemical cell is 1.08 V.