Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.
It’s RNA and DNA that stores and transmits genetic information
102 grams of ammonia is formed when 3 moles of nitrogen and 6.7 moles of hydrogen reacts.
Explanation:
The equation given is of Haeber's process in which the nitrogen is limiting factor in the ammonia formation and hydrogen if in excess gets delimited.
We know that 1 mole of Nitrogen gives 2 moles of ammonia.
We have 3 moles of nitrogen here,
So, 6 moles of ammonia will be form
so from the formula
no of moles=mass/atomic mass
mass= no. of moles*atomic mass
= 6*17
= 102 grams of ammonia will be formed.
So, 6 moles or 102 grams of ammonia is formed when 3 mole of nitrogen and 6.7 mole of hydrogen reacts.