Central "carbon" atom
2 oxygen atoms
held together by "covalent" bonds
has a "1s2 2s2 2px1 2py1 2pz0" electron
geometry
carbon atom is "sp" hybridized
Explanation:
Tc - 99 is technetium 99.
It is a radioactive element that decays spontaneously. It has a half-life of 211,000 years and decays to stable ruthenium.
- On the periodic table, it has an atomic number of 43;
Mass number = 99
Atomic number = number of protons = number of electrons in atom
Number of protons in Tc is 43
electron is 43
Mass number = number of protons + number of neutrons
Number of neutrons = mass number - number of protons = 99-43 = 56
learn more:
Atomic number brainly.com/question/2057656
#learnwithBrainly
Answers and Explanation:
a)- The chemical equation for the corresponden equilibrium of Ka1 is:
2. HNO2(aq)⇌H+(aq)+NO−2
Because Ka1 correspond to a dissociation equilibrium. Nitrous acid (HNO₂) losses a proton (H⁺) and gives the monovalent anion NO₂⁻.
b)- The relation between Ka and the free energy change (ΔG) is given by the following equation:
ΔG= ΔGº + RT ln Q
Where T is the temperature (T= 25ºc= 298 K) and R is the gases constant (8.314 J/K.mol)
At the equilibrium: ΔG=0 and Q= Ka. So, we can calculate ΔGº by introducing the value of Ka:
⇒ 0 = ΔGº + RT ln Ka
ΔGº= - RT ln Ka
ΔGº= -8.314 J/K.mol x 298 K x ln (4.5 10⁻⁴)
ΔGº= 19092.8 J/mol
c)- According to the previous demonstation, at equilibrium ΔG= 0.
d)- In a non-equilibrium condition, we have Q which is calculated with the concentrations of products and reactions in a non equilibrium state:
ΔG= ΔGº + RT ln Q
Q= ((H⁺) (NO₂⁻))/(HNO₂)
Q= ( (5.9 10⁻² M) x (6.7 10⁻⁴ M) ) / (0.21 M)
Q= 1.88 10⁻⁴
We know that ΔGº= 19092.8 J/mol, so:
ΔG= ΔGº + RT ln Q
ΔG= 19092.8 J/mol + (8.314 J/K.mol x 298 K x ln (1.88 10⁻⁴)
ΔG= -2162.4 J/mol
Notice that ΔG<0, so the process is spontaneous in that direction.
Answer:
A. Yes, the substance must be water.
Explanation:
The density of a substance is unique to it. Density is defined the as the amount of substance contained per volume.
One of the ways of identifying a substance is to determine its density. Every matter is known to have their own specific densities. This makes them different from other substances. The density of gold is unique to it and it differs from that of silver.
In fact, water has density of 1.00gcm⁻³. Experimental errors and some little factors must have altered our expected figure. This a case of precision and accuracy in the experiment.
Kepler stated three laws of planetary motion.
First law states that the pathway of a planet is an ellipse with the Sun at one of the foci.
Second law states that an imaginary line joining the Sun and a planet sweeps out equal areas during equal lengths of time.
Third law states that the square of the period of the orbit of a planet is directly proportional to the cube of the length of the distance from the Sun.
Therefore, the answer is that Kepler's second law of planetary motion states that planets cover the same area during equal time periods.