Answer : The value of equilibrium constant (K) is, 0.004
Explanation :
First we have to calculate the concentration of 

and,

Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:

Initial conc. 1.2 0 0
At eqm. (1.2-2x) 2x x
As we are given:
Concentration of
at equilibrium = x = 0.1 M
The expression for equilibrium constant is:
![K_c=\frac{[SO_2]^2[O_2]}{[SO_3]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5E2%5BO_2%5D%7D%7B%5BSO_3%5D%5E2%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (K) is, 0.004
<u>Conversion Factors:</u>
1.61 km = 1 mile
60 sec = 1 min
60 min = 1 hour
<u />
Use dimensional analysis to solve.
×
×
×
× 

= 36 miles/hour
If done properly, you should be left with the units <em>miles/hour</em>
<em />
Metallic bond is the electrostatic attraction between a positive ion and delocalised(free)electrons
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol