Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Answer:
true
Explanation:
The statement being made is completely true. This layer of rock is called a Sedimentary Rock level and is slowly formed over millions of years with minerals and organic remains from the bottom of the Oceans that may no longer be covered in water anymore. Since it is made up of all these minerals and remains, it is studied widely by Geologists and Archeologists to better understand the Earth's past.
Because the nucleus is made up of positively charged protons and neutrally charged neutrons, and no negatively charged particles, the charge of the nucleus will always be equal to the sum of the charges of its protons. A simpler way to say it is because each proton has a +1 charge, the charge of the nucleus will be the same as the number of protons in it.
Answer:
upthrust
Explanation:
i think it does not sink in water because of the force pulling it upwards
Answer:
16km
Explanation:
First change the minutes into hours then multiply by the distance.
(8÷60)×120=16km