Explanation:
Archimedes' principle states that the upward buoyant force which is exerted on body when immersed whether fully submerged or partially in the fluid is equal to weight of fluid which body displaces and this force acts in upward direction at center of mass of displaced fluid.
Thus,
<u>Weight of the displaced fluid = Weight of the object - Weight of object in fluid.</u>
Answer:
Explanation:
mass of object, m = 3 kg
spring constant, K = 750 n/m
compression, x = 8 cm = 0.08 m
angle of gun, θ = 30°
(a) As the ball is launched, it has some velocity due to the compression in the spring, so it has some kinetic energy.
(b) Let v be th evelocity of ball at the tim eof launch.
by using the conservation of energy
1/2 Kx² = 1/2 mv²
750 x 0.08 x 0.08 = 3 x v²
v = 1.265 m/s
By use of the formula of maximum height


h = 0.02 m
h = 2 cm
Answer:
The stitches and dimples around a baseball and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.
Explanation:
The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.
A smooth ball with no stitches or dimples has more air drag that opposes the motion.
A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.
What is the difference between<span> a</span>size declarator<span> and a </span>subscript<span>? The </span>size declarator<span> is ... When writing a function that accepts a two-dimensional </span>array<span> as an argument, which </span>size declarator<span> must you provide in the parameter </span>for<span> the</span>array<span>? The second size ...</span>
Explanation:
It is given that,
Total weight of the piston, W = F = 70 N
Area of the piston, 
Let P is the pressure exerted on the piston by the gas. The force per unit area is called the pressure exerted pressure of the gas. Mathematically, it is given by :



We know that the atmospheric pressure is given by :

So, the pressure is given by :



Hence, this is the required solution.