<span>You have multiple confounding variables, you cannot accurately conclude the relationship between the manipulated and dependent variable because the other variables that are not controlled for could be the reason for seeing a certain change</span>
Answer/Explanation: Speed and direction can change with time. When you throw a ball into the air, it leaves your hand at a certain speed. As the ball rises, it slows down. Then, as the ball falls back toward the ground, it speeds up again. When the ball hits the ground, its direction of motion changes and it bounces back up into the air.
Using the formula F = m*a. where F is the force, m is the mass and a is the acceleration you can use it for each. As long as there are no other forces towards the body in both cases :
F = m*a
F = 50*3
F = 150 N
<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;
Where
V = voltage difference ; in volts
I = Current ; in Amperes
R = Resistance ; in ohms
<u>1. Answer : </u> given that R = 10 ; V= 12 V ; I = ?
From ohms law, I = V/R
= 12/10
= 1.2 Amp.
<u>2. Answer:</u> given that R = 10 ; V= ? ; I = 5
From ohms law, V = IR
= 10×5 = 50 V
<u>3 . Answer:</u> given that R = ? ; V= 120 ; I = 5
From ohms law, R = V/I
= 120/5
= 24 Ω
<u>4 . Answer:</u> given that R = ? ; V= 10 ; I = 20
From ohms law, R = V/I
= 10/20
= 0.5 Ω
<u>5 . Answer:</u> given that R = 480 ; V= 24 ; I = ?
From ohms law, I = V/R
= 24/480
= 0.05 A
<u>6. Answer:</u> given that R = 150 ; V= ? ; I = 1
From ohms law, V = IR
= 1 × 150
= 150 V
Answer:
When two players are running full speed at each other on a football field they build up their momentum