1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
7

Which atmospheric layer prevents meteoroids from reaching earth’s surface

Physics
1 answer:
Natalija [7]3 years ago
5 0
Stratosphere because the atmosphere get denser
You might be interested in
I need help answering this question in the photo (middle)
GalinKa [24]
I believe it is because of weight if Timmy is larger and bigger than Maria that would mean he would stop slower just because of his bodyweight pushing on the back of the skateboard while Maria is all those skinny and she doesn’t have as much weight as she can go farther
3 0
3 years ago
What are the applications of pascal's principle​
Murrr4er [49]

Explanation:

  • The applications are, hydraulic lift- to transmit equal pressure throughout a fluid.
  • Hydraulic jack- used in the braking system of cars.
  • use of a straw- to suck fluids, which goes because of air pressure.
<h3>The question simply asks, where pressure can be applied. There are many others, such as <em><u>l</u></em><em><u>i</u></em><em><u>f</u></em><em><u>t</u></em><em><u> </u></em><em><u>p</u></em><em><u>u</u></em><em><u>m</u></em><em><u>p</u></em><em><u>.</u></em></h3>
5 0
3 years ago
A solution is prepared by dissolving 49.3 g of KBr in enough water to form 473 mL of solution. Calculate the mass % of KBr in th
son4ous [18]

Answer:

9.31%

Explanation:

We are given that

Mass of KBr=49.3 g

Volume of solution=473 mL

Density of solution =1.12g/mL

We have to find the mass% of KBr.

Mass =volume\times density

Using the formula

Mass of solution=1.12\times 473=529.76 g

Mass % of KBr=\frac{mass\;of\;KBr}{Total\;mass\;of\;solution}\times 100

Mass % of KBr=\frac{49.3}{529.76}\times 100

Mass % of KBr=9.31%

Hence, the mass% of KBr=9.31%

7 0
3 years ago
A cabbie is trying to stop when he notices a fare is whistling them over. The
liberstina [14]
  • K.E=18750J
  • Mass=m=2100kg
  • Velocity=v

\boxed{\sf K.E=\dfrac{1}{2}mv^2}

\\ \sf\longmapsto 18750=\dfrac{1}{2}2100v^2

\\ \sf\longmapsto 18750=1050v^2

\\ \sf\longmapsto v^2=\dfrac{18750}{1050}

\\ \sf\longmapsto v^2=17.85m^2

\\ \sf\longmapsto v=\sqrt{17.85}

\\ \sf\longmapsto v=4.1m/s

7 0
3 years ago
A coil of wire containing N turns is in an external magnetic field that is perpendicular to the plane of the coil and it steadil
krok68 [10]

Answer:

The Resultant Induced Emf in coil is 4∈.

Explanation:

Given that,

A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.

To find :-

find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).

So,

   Emf induced in the coil represented by formula

                          ∈  =   -N\frac{d\phi}{dt}                                  ...................(1)

                                          Where:

                                                    .   \phi = BAcos\theta     { B is magnetic field }

                                                                                 {A is cross-sectional area}

                                                    .  N = No. of turns in coil.

                                                    .  \frac{d\phi}{dt} = Rate change of induced Emf.

Here,

Considering the case :-

                                    N1 = 2N  &      \frac{d\phi1}{dt} = 2\frac{d\phi}{dt}

Putting these value in the equation (1) and finding the  new emf induced (∈1)

                           

                                      ∈1 =-N1\times\frac{d\phi1}{dt}

                                      ∈1 =-2N\times2\frac{d\phi}{dt}

                                       ∈1 =4 [-N\times\frac{d\phi}{dt}]

                                        ∈1 = 4∈             ...............{from Equation (1)}      

Hence,

The Resultant Induced Emf in coil is 4∈.        

                           

8 0
3 years ago
Other questions:
  • Which of the following would experience induced magnetism mosteasily? 
    15·1 answer
  • One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a s
    9·1 answer
  • Which is an example of chemical energy from batteries to electromagnetic ( light ) energy?
    9·1 answer
  • Help I need to know this answer!!
    11·1 answer
  • A rectangular solid is 5m long, 2m high and 4m wide. The mass of the solid is 300g. Find the density of this solid.​
    15·1 answer
  • Plz help me im really confused. The questions are in the second pic and the vehicles are in the first the fetures are in the las
    8·1 answer
  • 1. A bicycle initially moving with a velocity
    8·1 answer
  • True or false: Displacement is the total path traveled by an object
    13·1 answer
  • Walk done in units time is called​
    14·1 answer
  • Are the stack temperature and oxygen reasonable for these operating conditions? if not, what oxygen and stack temperature would
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!