Answer:
C, 42g
Explanation:
In thermal equilibrium, both bodies (metal pellet and water) both have the same final temperature (46.3°C).
Assuming no heat is lost to surroundings,
the energy lost from metal pellet = energy gained for water
Since E = mc∆T
(energy = mass x specific heat capacity x temperature change)
mc∆T (metal pellet) = mc∆T (water)
100 x 0.568 x (116-46.3) = m 4.184 (46.3 - 23.8)
3958.96 = 94.14m
m = 42g
Answer:
3 m/s
Explanation:
24 m/s over 8 seconds would be 24/8 making it be 3 m/s avg
Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
![Keq = \frac{[C]^c [D]^d}{[A]^a [B]^b}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%20%5BB%5D%5Eb%7D)
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
![Keq = \frac{[H3O^+]^1 [HCO3^-]^1}{[H2CO3]^1 [H2O]^1}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%5E%2B%5D%5E1%20%5BHCO3%5E-%5D%5E1%7D%7B%5BH2CO3%5D%5E1%20%5BH2O%5D%5E1%7D)
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Therefore, Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)