Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.
The movement of the object is considered to be kinetic energy while the object getting warmer indicates that there is thermal (heat) energy formed.
Based on this, as the object slides across the floor, friction slows down this motion and the object becomes warmer as kinetic energy is converted into thermal energy.
Answer:
Answered
Explanation:
x= 0.02 m
E_p= 10.0 J
E_p= 0.5kx^2
10= 0.5k(0.02)^2
solving we get
K= 50.0 N/m
Now
E'_p= 0.5kx'^2
E'_p= 0.5×50×(0.04)^2
E'_p=40 J
b) potential energy is a scalar quantity and it only depends magnitude and not direction so it will remain same in compression and expansion both
c) 20 J = 0.5×50,000×x^2
solving
x= 0.028 m
d) k is 50.0 N/m from above calculation
Answer:
No work was done.
W = 0
Explanation:
Work is said to be done whenever a force of one newton moves a body of one kilogram through a distance of one meter. Meaning the applied force has to move the body from a point of rest through certain distance.
Work = force × distance
So, in the case of this question, we only have the force been applied, but no distance was covered. Hence, no work was done.
W = 3000× 0 meter
W = 0
It’s designed to protect an electrical circuit from damage caused by overcurrent, usually resulting from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected.
That’s really just the basic purpose.
Happy to help!
~Brooke❤️