Answer:
The amount of heat absorbed is <u>5.183889 kJ</u> .
Explanation:
In conversion of water to ice it rejects some heat while in conversion of ice to water it absorbs heat which is called latent heat which is given as 6.02 kJ/mol.
The amount of ice given is 15.5 g.
Converting it to moles as the latent heat is given in per moles:

Molecular mass of Hydrogen (H) and Oxygen (O) is 1 u and 16 u respectively.
Molecular mass of water is 18 g (
⇒ 2*1+16=18 ).
mole = 15.5/18 ≈ 0.8611 moles
Therefore the amount of heat absorbed by 15.5 g of ice ( 0.8611 moles) = <em>Latent heat * moles
</em>
Heat absorbed = 6.02*0.8611
= 6.02*(15.5/18)
≈ 5.183889 kJ
Answer:
1. B
2.C
3.D
4.Sorry don't this one :(
5.A
Explanation:
please give me at least 20 points ❤
Answer:
Based on compounds given, NO reaction occurs
Explanation
The compounds should exchange ions to generate a driving force that pulls the reaction to completion. => Example ...
The Molecular Equation is ...
NH₄Cl(aq) + AgNO₃(aq) => NH₄NO₃(aq) + AgCl(s)
Silver chloride forms in this reaction as a solid precipitate because of its low solubility and is the 'Driving Force' of the reaction. Driving Force is a more stable compound than any on the reactant side and when formed leaves the reaction system as a solid ppt, liquid weak electrolyte (i.e., weak acid or weak base) or a gas decomposition product of a weak electrolyte.
The Ionic Equation is ...
NH₄⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) => NH₄⁺(aq) + NO₃⁻(aq) + AgCl(s)
This shows all ions from reaction plus the Driving Force of the reaction.
The Net Ionic Equation is ...
Ag⁺(aq) + Cl⁻(aq) => AgCl(s)
The Net Ionic Equation shows only those ions undergoing reaction. The NH₄⁺ and NO₃⁻ ions are 'Spectator Ions' and do not react.
Attached is a reference sheet for determining the Driving Force of a Metathesis Double Replacement Reaction. Suggest reviewing acid-base theories and the products of decomposition type reactions.