Answer:
hesadghtyou is you here boiii
Explanation:
Kinetic and static friction are both resistive forces
The steps in the heating of a metal seat in a park are:
Step 1: Heat travels from the sun to Earth
Step 2: Heat travels through atmosphere to the top of the seat
Step 3: Heat from the top of the seat travels through the seat to the lower parts of the seat.
-- Heat is transferred by radiation in Step 1 and Step 2. <em>(B)</em>
-- From the top of the seat to the bottom, heat is transferred by conduction.
There's no convection happening anywhere in the park-hot-seat scenario.
Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A
Answer:
2033219.05 J
Explanation:
V = Volume
P = Pressure = 2 atm
m = Mass of water = 1 kg
= Heat of vaporization = 
Work done in an isobaric system is given by

Work done is 166780.95 J
Change in internal energy is given by

Heat is given by


The increase in internal energy of the water is 2033219.05 J