Maybe you can split up the questions. I will try to answer your first question.
1. In an elastic collision, momentum is conserved. The momentum before the collision is equal to the momentum after the collision. This is a consequence of Newton's 3rd law. (Action = Reaction)
2. Momentum: p = m₁v₁ + m₂v₂
m₁ mass of ball A
v₁ velocity of ball A
m₂ mass of ball B
v₂ velocity of ball B
Momentum before the collision:
p = 2*9 + 3*(-6) = 18 - 18 = 0
Momentum after the collision:
p = 2*(-9) + 3*6 = -18 + 18 = 0
3: mv + m(-v) = m(-v) + m(v)
the velocities would reverse.
4.This question is not factual since the energy of an elastic collision must also be conserved. The final velocities should be: v₁ = -1 m/s and v₂ = 5 m/s. That said assuming the given velocities were correct:
before collision
p = 10*3 + 5*(-3) = 30 - 15 = 15
after collision:
p = 10*(-2) + 5 * v₂ = 15
v₂ = 7
5.You figure out.
Answer:
<em>Total momentum is conserved</em>
Explanation:
<u>Conservation of Momentum
</u>
The momentum is a physical magnitude that measures the product of the object's velocity by its mass. The total momentum of a system is the sum of all its components' individual momentums. The two-bear system starts with a total moment of

When both bears stick together, the total mass is 20 kg, and the new momentum is

We have assumed both bears move to the right after the collision. In this situation, the total momentum is conserved
Answer:
D. mass to see how it affected stretch length of a rubber band