Answer:
29.75 revolutions
Explanation:
The kinematic formula for distance, given a uniform acceleration a and an initial velocity v₀, is

This car is starting from rest, so v₀ = 0 m/s. Additionally, we have a = 9.2/9.7 m/s² and t = 9.7 s. Plugging these values into our equation:

So, the car has travelled 44.62 m in 9.7 seconds - we want to know how many of the tire's <em>circumferences</em> fit into that distance, so we'll first have to calculate that circumference. The formula for the circumference of a circle given its diameter is
, which in this case is 47.8π cm, or, using π ≈ 3.14, 47.8(3.14) = 150.092 cm.
Before we divide the distance travelled by the circumference, we need to make sure we're using the same units. 1 m = 100 cm, so 105.092 cm ≈ 1.5 m. Dividing 44.62 m by this value, we find the number of revs is
revolutions
Explanation:
The battery is a store of internal energy (shown as chemical energy). The energy is transferred through the wires to the lamp, which then transfers the energy to the surroundings as light. These are the useful energy transfers - we use electric lamps to light up our rooms.
Let's start by differentiating the terms distance and displacement. They both refer to the length of paths. Distance only accounts for the total length regardless of the path taken. Displacement measures the linear path from the starting point to the end point. So, it does not necessarily follow the actual path. However, for this problem, assuming that the path is just in one direction, displacement and distance would just be equal. The equation would be:
Distance = Displacement = v₀t + 0.5at² = 0(10 s) + 0.5(+1.2 m/s²)(10 s)²
Distance = Displacement = 60 meters
I think the answer is digestive system
Hope this helps... mark as Brainliest plz
Answer:
I think d is the answer haha