1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
8

Two charged spheres are 20 cm apart and exert an attractive force of 8 x 10-9 n on each other. What will the force of attraction

be when the spheres are moved to 10 cm apart?
Physics
1 answer:
Pavel [41]3 years ago
6 0

Answer:

3.2\cdot 10^{-8} N

Explanation:

The inital electrostatic force between the two spheres is given by:

F=k\frac{q_1 q_2}{r^2}

where

F=8\cdot 10^{-9} N is the initial force

k is the Coulomb's constant

q1 and q2 are the charges on the two spheres

r is the distance between the two spheres

The problem tells us that the two spheres are moved from a distance of r=20 cm to a distance of r'=10 cm. So we have

r'=\frac{r}{2}

Therefore, the new electrostatic force will be

F'=k\frac{q_1 q_2}{(r')^2}=k\frac{q_1 q_2}{(r/2)^2}=4k\frac{q_1 q_2}{r^2}=4F

So the force has increased by a factor 4. By using F=8\cdot 10^{-9} N, we find

F'=4(8\cdot 10^{-9} N)=3.2\cdot 10^{-8} N

You might be interested in
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,
Sedbober [7]

Answer:

a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa

Explanation:

a. Internal energy and the relative specific volume at s_1 are determined  from A-17:u_1=214.07kJ/kg, \ \alpha_r_1=621.2.

The relative specific volume at s_2 is calculated from the compression ratio:

\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825

#from this, the temperature and enthalpy at state 2,s_2 can be determined using interpolations T_2=862K and h_2=890.9kJ/kg. The specific volume at s_1 can then be determined as:

\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg

Specific volume,s_2:

\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg

The pressures at s_2 \ and\  s_3 is:

P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa

.The thermal efficiency=> maximum temperature at s_3 can be obtained from the expansion work at constant pressure during s_2-s_3

\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K

b.Relative SV and enthalpy  at s_3 are obtained for the given temperature with interpolation with data from A-17 :a_r_3=4.553 \ and\  h_3=1909.62kJ/kg

Relative SV at s_4 is

a_r_4=\frac{r}{r_c}\alpha _r_3

==\frac{16}{2}\times4.533\\=36.424

Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563

Hence, the thermal efficiency is 0.563

c. The mean relative pressure is calculated from its standard definition:

MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa

Hence, the mean effective relative pressure is 674.95kPa

3 0
3 years ago
An insulating sphere is 8.00 cm in diameter and carries a 6.50 µC charge uniformly distributed throughout its interior volume.
Kobotan [32]

Explanation:

(a)   Formula to calculate the density is as follows.

            \rho = \frac{Q}{\frac{4}{3}\pi a^{3}}

                       = \frac{6.50 \times 10^{-6}}{\frac{4}{3} \times 3.14 \times (0.04)^{3}}

                     = 2.42 \times 10^{-2} C/m^{3}

Now, calculate the charge as follows.

            q_{in} = \rho(\frac{4}{3} \pi r^{3})

                      = 2.42 \times 10^{-2} C/m^{3} \times 4.1762 \times (0.01)^{3}

                      = 10.106 \times 10^{-8} C

or,                   = 101.06 nC

(b)  For r = 6.50 cm, the value of charge will be calculated as follows.

                q_{in} = \frac{Q}{\frac{4}{3}\pi a^{3}}

                          = \frac{6.50 \times 10^{-6}}{\frac{4}{3} \times 3.14 \times (0.065)^{3}}

                          = 7.454 \mu C

7 0
3 years ago
In this lab, you observed how different factors such as velocity, gradient, and ____ , or amount of water in a stream, affect th
egoroff_w [7]

Answer:

volume and erosion

Explanation:

7 0
3 years ago
Read 2 more answers
Predict changes in state according to change in particle motion. Know the vocabulary used to describe changes of state.
ziro4ka [17]

The change in the state of matter causes change in the motion of the particles of the matter. The gaseous state of matter has the greatest speed while the solid state has the least speed.

The change in state of every matter is accompanied by lost or gained of energy.

Example is water.

The solid state of water is ice. The motion of particles of the water is relatively zero because the molecules are held at a fixed position.

The liquid state of water occurs when the temperature of the ice is increased above zero degree Celsius. The speed of the particles of water in liquid state is greater than solid state.

The gaseous state of water occurs when the temperature of the liquid water is increased beyond 100 degree Celsius. The speed of water in gaseous state is greater than liquid state.

Learn more about different state of matter here: brainly.com/question/9402776

7 0
2 years ago
Will Mark Brainliest
almond37 [142]

Answer:

2s worth of falling up

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A pendulum of mass 5.0 kg hangs in equilibrium. A frustrated student walks up to it and kicks the bob with a horizontal force of
    9·1 answer
  • A change in color during a reaction is often a sign that a chemical change has occurred.
    9·2 answers
  • A 92-kg astronaut and a 2000-kg satellite are at rest relative to a space station. the astronaut pushes on the satellite, giving
    9·2 answers
  • What is weight in Newton’s, of a 50.-kg person on earth
    6·1 answer
  • What happens when heat from inside Earth is transferred to its surface? A:Warmer material is pushed to the crust B:More dense ma
    9·2 answers
  • In the unsaturated zone, the pores of the soil are totally filled with water. T or F
    9·1 answer
  • What is the equation for finding the acceleration of an object moving in a straight line?
    14·1 answer
  • Help please i really want to pass this quiz
    8·1 answer
  • What is the difference between storm spotter and storm chaser?
    10·1 answer
  • Determine the distance from the Earth's center to a point outside the Earth where the gravitational acceleration due to the Eart
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!