The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
Explanation & answer:
Given:
Fuel consumption, C = 22 L/h
Specific gravity = 0.8
output power, P = 55 kW
heating value, H = 44,000 kJ/kg
Solution:
Calculate energy intake
E = C*P*H
= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)
= (22/3600)*1000*0.8*44000 j/s
= 215111.1 j/s
Calculate output power
P = 55 kW
= 55000 j/s
Efficiency
= output / input
= P/E
=55000 / 215111.1
= 0.2557
= 25.6% to 1 decimal place.
The velocity of pin B after rod AB has rotated through 90* is vb = 3.2549 m/s.
<h3>What is Potential and Kinetic energy?</h3>
Potential energy is the energy that is stored in any item or system as a result of its location or component arrangement. The environment outside of the object or system, such as air or height, has no impact on it. In contrast, kinetic energy refers to the energy of moving particles inside a system or an item.
mass of rod, mab = 2.4kg
mass of rod, mbc = 4kg
conservation of energy


potential energy at position 1,

V1 = 2.5 * 9.81 * 0.18 + 4 * 9.81 * 0.18
V1 = 11.30112
kinetic energy T1 at position 1 is zero
potential energy at position 2 is zero
K.E at position 2,


= 1/3 *4 * (0.36)²
=0.10368kg m²

= 1/12 *4 * (0.6)²
=0.12kg m²
on putting the values in above equation we get,
T₂ = 1.0667vb²
0 + 11.30112 = 1.0667vb² + 0
vb = 3.2549 m/s
to learn more about Kinetic and potential energy go to - brainly.com/question/18963960
#SPJ4
Explanation:
the average velocity of the car is 15 m/s example I have this on a test
Answer:
4.4 cm
Explanation:
Given:
Distance of the screen from the slit, D = 1 m
Distance between two third order interference minimas, x = 22 cm
Let's say, minima occurs at:

We have:

Calculating further for the width of the central bright fringe, we have:

= 4.4 cm
Note: w in representswavelength