Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.
They will attract each other when brought close but when they touch the glass rod will become a negative charge and will repel each other
Answer:
Atmosphere.
Explanation:
Carbon moves from fossil fuels to the atmosphere when fuels are burned. When humans burn fossil fuels to power factories, power plants, cars and trucks, most of the carbon quickly enters the atmosphere as carbon dioxide gas.
Hey there!
The equivalence is point in a titration is the point at which you have neutralized all of your base/acid with your titrant acid/base from a buret. This can be seen with indicators which change color at the equivalence point in a titration to signal to you that all of your base/acid has been reacted with. For example, all your molecules of OH⁻ from a NaOH base in a beaker have been neutralized by H⁺of HCl acid from your titrant in a buret leaving only Na⁺ ions and Cl⁻ ions and neutral H₂O molecules.
<u> C^1H^1C^1I^1</u>
Explanation:
<u>this seems already balanced</u>
C = 1
H =1
C = 1
I = 1