It is effected by diffusion (the power of smell and wind spread) but a solid is not.
substitute: <span><span>t<span>1/2</span></span>=<span><span>ln(2)</span>k</span>→k=<span><span>ln(2)</span><span>t<span>1/2</span></span></span></span>
Into the appropriate equation: <span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−kt</span></span></span>
<span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−<span><span>ln(2)</span><span>t<span>1/2</span></span></span>t</span></span></span>
<span>[A<span>]t</span>=(250.0 g)∗<span>e<span>−<span><span>ln(2)</span><span>3.823 days</span></span>(7.22 days)</span></span>=67.52 g</span>
Answer:
put a salt into the beakers
Other predators? or other factors that affect the food chain ie extinction of whatever source the rabbits feed off of
The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.